

ACCELERATE YOUR IOT ADOPTION

F4W DEVELOPERS' WORKSHOP

www.eglobalmark.com

PLAN

What is the question again?

As a data producer: where do I push my data?

As an app developer: where do I consume available information?

As a use case provider: what is the added value of the F4W approach compared to what I have in house?

As a F4W project: where is all of this deployed? By use cases or centrally?

Introduction

FIWARE vs NGSI-LD

FIWARE: a foundation emerged from an EU program

- Animating a community of developers & users (800+ SMEs, ...)
- Maintaining a catalog of Open Source generic enablers to create end-to-end solutions
- Developing data models in cooperation with TMForum
- Contributing to the development of the ETSI NGSI-LD specification it builds upon

ETSI NGSI-LD: a specification built within ETSI standardisation body

- A RESTful API to handle context information
- A cross-domain data model to exchange context information across domains
- Retro-compatibility with former NGSIv2 (still maintained in FIWARE, not considered in F4W)

RESOURCES

FIWARE ecosystem: open-source enablers, community

www.fiware.org

An update is in preparation. DETAILS ALERT

ETSI ISG CIM

(NGSI-LD standardisation

apping NGSI-LD API

API & Model

REQUIREMENTS

Handle data heterogeneity

- Data sources: IoT, open data, proprietary, document, ...
- Data format: within and across domains

Handle legacy: do not replace but connect

Allow flexibility

Deploy new services/use cases/apps when needed

Handle scalability and data protection

Distributed/federated approaches

Ease adoption

Developers' friendliness

Allow batch & stream processing, ML, IA

ALL IS ABOUT CONTEXT INFORMATION EXCHANGE

Data contextualised in time, space and relations to other data

USAGE EXAMPLE

"Icons made by Freepik, phatplus, wichai.wi from www.flaticon.com"

NGSI-LD DEPLOYMENT ARCHITECTURES

Distributed

Federated

Pictures courtesy of ETSI

CAN WE (OR YOU) "KEEP IT SIMPLE"?

ETSI ISG CIM NGSI-LD API FEATURES (+LIMITS)

- Information Model is Graph-based & information-centric
 - Core concepts include Entities and Relationships
 - Entities can have Properties and Relationships
 - Relationships/Properties can also have Properties, Relationships
- Referencing of defined/hierarchical vocabularies/ontologies
 - All terms are unambiguously defined
 - Allows users to reference their familiar information definitions
- Model and Query language (is constrained so more predictable)
 - Federation of (independent) information sources, anywhere
 - Queries: based on entity type or ID, can filter results, can constrain geographic scope, constrained not to traverse graph (only one level at a time)

Source: ETSI ISG CIM

Information Model - Highlights

- NGSI Entity → Physical or virtual object.
 - It has (one) Entity Type.
 - Uniquely identified by an Entity Id (URI)
- Entity has zero or more attributes identified by a name
 - Property --> Static or dynamic characteristic of an entity
 - GeoProperty (geospatial context)
 - TemporalProperty (time context)
 - Relationship → Association with a Linked entity (unidirectional)
- Properties have a value
 - An NGSI value can be a single value (Number, String, boolean), or complex (Array, Structured Value)
- Relationships have an object
 - A URI which points to another entity (target of the relationship). Target can be a collection.

Information Model – Highlights (II)

- Cross-Domain, core properties for giving context to your information are defined in a mandatory way, to be used by API operations (e.g. geo queries)
 - location → Geospatial location, encoded as GeoJSON.
 - observedAt → Observation timestamp, encoded as ISO8601. (timestamp)
 - createdAt → Creation timestamp (of entity, attribute). dateCreated in NGSIv2
 - modifiedAt → Update timestamp (of entity, attribute). dateModified in NGSIv2
 - unitCode → Units of measurement, encoded as mandated by UN/CEFACT.
- Recommended practice
 - Use URIs to identify your entities.
 - A URN schema is provided off-the-shelf. It enables to know in advance what entity type an id refers to
 - urn:ngsi-ld:<Entity_Type_Name>:<Entity_Identification_String>

Information Model (as UML) - NGSI LD

CROSS DOMAIN + INFORMATION MODEL

JSON-LD (RDF friendly) representation (a.k.a. NGSI LD)

```
"id": "urn:ngsi-ld:Vehicle:A4567",
"type": "Vehicle",
"brandName": {
  "type": "Property",
  "value": "Mercedes"
                                         NGSI LD
"isParked": {
  "type": "Relationship",
  "object": "urn:ngsi-ld:OffStreetParking:Downtown1",
  "observedAt": "2017-07-29T12:00:04Z",
  "providedBy": {
     "type": "Relationship",
     "object": "urn:ngsi-ld:Person:Bob"
"@context": [
  "http://uri.etsi.org/ngsi-ld/coreContext.jsonld",
  "http://example.org/cim/commonTerms.jsonld",
  "http://example.org/cim/vehicle.jsonld",
  "http://example.org/cim/parking.jsonld"
```

```
"id": "urn:ngsi-ld:OffStreetParking:Downtown1",
"type": "OffStreetParking",
"availableSpotNumber": {
  "type": "Property",
  "value": 121,
  "observedAt": "2017-07-29T12:05:02Z",
  "reliability": {
    "type": "Property",
    "value": 0.7
  "providedBy": {
    "type": "Relationship",
    "object": "urn:ngsi-ld:Camera:C1"
"location": {
  "type": "GeoProperty",
  "value": {
    "type": "Point",
    "coordinates": [-8.5, 41.2]
"@context": [
  "http://uri.etsi.org/ngsi-ld/coreContext.jsonld",
  "http://example.org/cim/parking.jsonld"
```

Simplified representation (keyValues)

```
"id": "urn:ngsi-ld:OffStreetParking:Downtown1",
"type": "OffStreetParking",
"name": "Downtown One",
"availableSpotNumber": 121,
"totalSpotNumber": 200,
"location": {
 "type": "Point",
 "coordinates": [-8.5, 41.2]
"@context": [
  "http://uri.etsi.org/ngsi-ld/coreContext.jsonld",
 "http://example.org/cim/parking.jsonld"
```


Equivalent in NGSI-LD and NGSIv2

Temporal Queries (e.g. for trend analysis)

SUBSCRIPTION

NGSI-LD API = Queries & Notifications

- Periodic
- On change
- On event
 - > Query based
 - > Geoproperties (near, within, ...

The grammar that defines the query language in ABNF format [12] is described below (it has been validated using https://tools.ietf.org/tools/bap/abnf.cgi) and shall be supported by implementations:

```
Query = (QueryTerm / QueryTermAssoc) *(logicalOp (QueryTerm / QueryTermAssoc))
QueryTermAssoc = %x28 QueryTerm *(logicalOp QueryTerm) %x29
                                                                     ; (QueryTerm)
QueryTerm = Attribute
QueryTerm = Attribute Operator ComparableValue
QueryTerm =/ Attribute equal CompEqualityValue
QueryTerm =/ Attribute unequal CompEqualityValue
QueryTerm =/ Attribute patternOp ReqExp
QueryTerm =/ Attribute notPatternOp RegExp
Attribute = attrName / compoundAttrName / attrPathName
Operator = equal / unequal / greaterEq / greater / lessEq / less
ComparableValue = Number / quotedStr / dateTime / date / time
OtherValue = false / true
Value = ComparableValue / OtherValue
Range = ComparableValue dots ComparableValue
ValueList = Value 1*(%x2C Value)
                                                                     ; Value 1*(, Value)
CompEqualityValue = OtherValue / ValueList / Range / URI
equal = %x3D %x3D
unequal = x21 x3D
                                                                     ; !=
greater = %x3E
                                                                     ; >
greaterEq = %x3E %x3D
                                                                     ; >=
less = %x3C
                                                                     ; <
lessEq = %x3C %x3D
patternOp = %x7E %x3D
notPatternOp = %x21 %x7E %x3D
dots = %x2E %x2E
attrNameChar =/ DIGIT / ALPHA
attrNameChar =/ %x5F
                                                                     ; _
attrName = 1*attrNameChar
attrPathName = attrName *(%x2E attrName)
                                                                     ; attrName *(. attrName)
compoundAttrName = attrName *(%x5B (attrName) %x5D)
                                                                     ; . attrName *([ attrName ])
quotedStr = String
                                                                     ; '*char'
andOp = %x3B
                                                                     ; ;
orOp = %x7C
logicalOp = andOp / orOp
```

See https://fiware-tutorials.readthedocs.io/en/latest/subscriptions/index.html

NGSI-LD API OPERATIONS

General Operations

- Entity create
- Entity update
- Entity partial update
- Entity delete
- Entity retrieval
- Queries
- Subscriptions

Registry Operations

- CSRegistryEntry create
- CSRegistryEntry update
- CSRegistryEntry partial update
- CSRegistryEntry delete
- CSRegistryEntry retrieval
- CSRegistryEntry query
- CSRegistryEntry subscription

Batch Operations

- Batch Entity Creation
- Batch Entity Create/Update (Upsert)
- Batch Entity Update
- Batch Entity Delete

Temporal Operations

- Create/Update Temporal Entity Representation
- Add Attributes to Temporal Entity Rep.
- Delete Attribute from Temporal Entity Rep.
- Modify Attribute Instance in Temporal Entity Rep.
- Delete Attribute Instance from Temporal Entity Rep.
- Delete Temporal Entity Representation
- Retrieve Temporal Entity Evolution
- Query Temporal Entity Evolution

NGSI-LD QUERIES

- Query language on Attribute values
 - Value of a Property
 - Object of a relationship
- Temporal queries datatype
 - time (absolute timestamp)
 - timerel (before, after, between)
 - endTime
 - timeProperty (name< of property handling temporal information)

Geoqueries

- Represented through GeoJSON geometries. Basic GeoProperties defined:
 - Location
 - observationSpace
 - OperationSpace
- Advanced queries
 - Near
 - Equal
 - Disjoint
 - Intersect
 - Within
 - Contains
 - Overlaps

How to START

OVERALL FIWARE "ARCHITECTURE"

Smart Energy inspiration

FIWARE CATALOGUE

sy Jarket

The FIWARE Catalogue is a curated framework of **open source platform components** which can be assembled together and with other third-party platform components to accelerate the development of **Smart Solutions**.

The main and only mandatory component of any "Powered by FIWARE" platform or solution is the FIWARE Orion Context Broker Generic Enabler, which brings a cornerstone function in any smart solution: the need to manage context information, enabling to perform updates and bring access to context.

Building around the **FIWARE Context Broker**, a rich suite of complementary FIWARE components are available, dealing with:

- Interfacing with the Internet of Things (IoT), Robots and thirdparty systems, for capturing updates on context information and translating required actuations.
- Context Data/API management, publication, and monetization, bringing support to usage control and the opportunity to publish and monetize part of managed context data.
- Processing, analysis, and visualization of context information implementing the expected smart behavior of applications and/or assisting end users in making smart decisions.

Migration NGSIv2 -> NGSI-LD ongoing

https://www.fiware.org/developers/catalogue/

1ST STEP: CHOOSE A NGSI-LD CONTEXT BROKER

Options

- 1. Implement your own
- 2. Deploy one available off the shelves
 - > ORION-LD (
 - > SCORPIO
 - > STELLIO (EGM)
 - > ...
- 3. Consume a end-point made available by a partner/project

Note: NGSI-LD specification:

- Allows for time-series requests
- Does not impose anything on storing the history

NGSI-LD BROKERS DEPLOYMENT STRATEGIES

ORION-LD

- By default: keep only last value
- With additional enablers
 - > Store short term history
 - > Store long term history

https://fiware-academy.readthedocs.io/en/latest/core/orion-ld/index.html https://github.com/FIWARE/context.Orion-LD

NGSI-LD BROKERS DEPLOYMENT STRATEGIES

SCORPIO

© NEC Technologies India Private Limited 2019

Orchestrating a brighter world

https://www.slideshare.net/FI-WARE/fiware-global-summit-the-scorpio-ngsild-broker-features-and-supported-architectures https://github.com/ScorpioBroker/ScorpioBroker

NGSI-LD BROKERS DEPLOYMENT STRATEGIES

STELLIO

Endpoint available

Plan for public release before June (OS)

INTERACTING WITH NGSI-LD API

Demo + Q&A

CONCLUSION

Did we answer some questions

As a data producer: where do I push my data?

As an app developer: where do I consume available information?

As a use case provider: what is the added value of the F4W approach compared to what I have in house?

As a F4W project: where is all of this deployed? By use cases or centrally?

www.eglobalmark.com

THANK YOU

Franck Le Gall

COO

Tel: +33.6.20.03.54.20

E.mail: Franck.le-gall@eglobalmark.com

