

D4.5 FIWARE4_Smart Metering and Citizen Engagement

Author: Ben Ward (SWW)

Co-Authors: Gareth Lewis (UNEXE), Brett Snider (UNEXE), Josh Pocock (SWW), Jesper Pedersen (SWW), James Mercer (SWW)

May 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 821036.

Disclaimer

This document reflects only the author's view. The European Commission is not responsible for any use that may be made of the information it contains.

Intellectual Property Rights

© 2022, Fiware4Water consortium

All rights reserved.

This document contains original unpublished work except where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has been made through appropriate citation, quotation or both.

This document is the property of the Fiware4Water consortium members. No copying or distributing, in any form or by any means, is allowed without the prior written agreement of the owner of the property rights. In addition to such written permission, the source must be clearly referenced.

Project Consortium

Executive Summary

South West Water (SWW) provide cleaning drinking water for 1.7 million customers across the South West of England; treating water from large impounding reservoirs and rivers and pumping this supply across a vast network to the customers tap. The stewardship of water resources has always been paramount but is increasingly challenging with Covid-19 and climate change. One of the best ways to do this is by helping customers use less water and by reducing leakage from the network. The benefits also include lower customer water bills and reduced energy usage from treatment and pumping.

From previous studies, SWW understand that making customers more aware of their day-to-day water consumption drives positive behavioural changes and reduces overall consumption. Installing a standard water meter alone; which are typically read at 6-monthly intervals, can reduce consumption by up to 45%. Smart meters increase this meter read frequency to once per day and could promote further water saving benefits, especially if the data is made easily accessible to the customer. Furthermore, smart meter data can aid in the identification of leaks and bursts and wider understanding of water use behaviour to support supply and demand planning.

100 domestic smart meters and a Low Power Wide Area Network (LPWAN) were installed in a region called Great Torrington; South West England. FIWARE enabled technology was built to collect, store, and analyse water consumption data and four micro-services were developed including:

A customer smart phone application allowing customers with a smart meter to view their daily usage, compare their use against others and set consumption reduction targets,

A leakage detection and high consumption application which presents SWW with sensor and data driven alarms.

A machine learning tool to cluster customers into groups of similar water use behaviour to help SWW target customers with water efficiency campaigns

A hydraulic model linked to smart meter data built in EPANET for burst and leak detection

The services were co-designed and reviewed by a local water forum established in Great Torrington, led by the major and 12 other residents, and SWW operational staff responsible for leakage, water efficiency and water resources. They offer substantial benefits to both the customer and the Water Utility. For the customer; a reduced water bill and positive feedback they are helping the environment. For SWW; improved management of the water distribution system, faster response to network events (bursts and leaks), and a better understanding of leakage and water demand at household and area level.

As testimony to the project's success, SWW have already installed a further 450 Sigfox enabled smart meters whose data will be processed through the same technology framework, with this number extending to c.70,000 by 2025. The services developed will also feature in our longer-term strategies to steward water resources and reduce environmental impact in the face of climate change and hotter, drier weather in the summer.

The European Added Value and policies recommendations are detailed in the Added Value and Upscaling section.

Related Deliverables

The related deliverables are D1.1, D1.2, D1.3, D1.4, D2.3, D3.2, D3.4

Document Information

Programme	H2020 – SC0511-2018	
Project Acronym	Fiware4Water	
Project full name	FIWARE for the Next Generation Internet Services for the WATER sector	
Deliverable	D4.5: FIWARE4_Smart Metering and Citizen Engagement	
Work Package	Demonstrating Fiware4Water in the Real (Water) World	
Task	FIWARE4_Smart Metering and Citizen Engagement in the UK	
Lead Beneficiary	SWW	
Author(s)	Ben Ward (SWW)	
Contributor(s)	Gareth Lewis (UNEXE), Brett Snider (UNEXE), Josh Pocock (SWW), Jesper Pedersen (SWW), James Mercer (SWW)	
Quality check	Marc Ribalta (EURECAT)	
Planned Delivery Date	31/05/2022	
Actual Delivery Date	31/05/2022	
Dissemination Level	Public	

Revision history

Version	Date	Author(s)/Contributor(s)	Notes
Draft1	01/4/2022	Gareth Lewis	First draft
Draft2	17/05/2022	Marc Ribalta	Internal review
Draft2	28/5/2022	Joshua Pocock	Comments addressed
Final	30/5/2022	Joshua Pocock	Finalisation

Table of content

E	xecutive Summary		1		
T	able o	of content	3		
Li	st of	figures	5		
Li	st of	tables	6		
Li	st of	Acronyms/Glossary	6		
In	ıtrod	uction	7		
ı.	Ca	ase Study Description	8		
П	. Da	ata management	10		
	II.1.	Data extraction and interpretation	12		
Ш	l.	Engaging with customers	14		
	III.1.	Initial engagement period – summary of responses	16		
	III.2.	Installation period – summary of the programme	17		
	III.3. deve	Subsequent engagement – customer communication whilst the Fiware application			
I۱	/ .	Utility Smart Meter Application	23		
	IV.1.	Methodology of Development	23		
	IV.2.	Testing and interim data feedback	23		
	IV.3.	Rules and logic	24		
	IV.4.	Description of the application and its functionality	24		
	IV.5.	Overall comments regarding application	28		
	i.	Technology	28		
	ii.	Identification of customer leaks	28		
V. Customer Smart Meter Application					
	V.1.	Methodology of Development	30		
	V.2.	Initial requirements and prototypes	30		
	V.3.	Research & Development activities	31		
	i.	Stellio	31		
	ii.	Django	32		
	iii.	Flutter	32		
	V.4.	Co-design with local water forum	32		
	V.5.	Devops hosting	34		

	V.6.	Description of Application	. 35
	V.7.	Rules and logic	. 35
	V.8.	How does it work?	. 36
	V.9.	Local water forum review	. 37
V	١.	Pipe Burst Detection – Proof of Concept	38
	VI.1.	Description of Project	. 38
	VI.2.	Methodology	. 39
	i.	Burst Detection	. 39
	ii.	Burst Localization	. 40
	iii.	Burst Mitigation	. 42
	VI.3.	Results	. 44
	i.	Burst Detection	. 44
	iii.	Burst Mitigation	. 46
	VI.4.	Next Steps	. 47
C	onclu	sion and perspectives	48
	i.	FIWARE / Stellio	. 48
	ii.	Development environment	. 49
	iii.	Limited understanding of FIWARE/docker	. 49
	iv.	Django (app server development)	. 50
	٧.	Flutter (mobile app development)	. 50
	vi.	IT policies	. 51
Α	dded	value and upscaling	52
		nces	53

List of figures

Figure 1: Summary view of the system architecture	10
Figure 2: Stellio dashboard providing access and storage to raw customer meter data	11
Figure 3: The average water consumption per cluster per day from the k-means clustering algo	rithm
prototype for the summer (June, July, August) months of 2017-2018. The 7 different clusters bas	sed of
customer and household features are represented in different colours	12
Figure 4: Entity relationship data model	13
Figure 5: Customer engagement and communication timeline	15
Figure 6: Smart water meter application co-design workshop	15
Figure 7: Positive responses to the programme by type of communication method	16
Figure 8: Rate of uptake in the smart meter installation programme during the engagement perio	
Figure 9: Internal meter chamber showing smart meter pit and external chamber lid	17
Figure 10: Summary of water meter installation types and feasibility	18
Figure 11: Aerial view of Greater Torrington pilot area	18
Figure 12: Primary SigFox communications masts installed and powered at SWW's service rese	ervoir
(left) and secondary arial installed at the main town centre car park (right)	19
Figure 13: PowerBI connection to Sigfox/stellio interface, showing all meters	20
Figure 14: BI connection to Sigfox/stellio interface, showing an individual customers consumption	n data
and bill comparison	20
Figure 15: saver no leak	21
Figure 16: saver small leak	22
Figure 17: Utility application view of top table	25
Figure 18: Utility application view of area map and consumption chart	26
Figure 19: Utility application technician scheduling feature pop out	27
Figure 20: Leaks greater than 1,000 litres/day on customers side pipework	29
Figure 21: Leaks less than 1,000 litres/day on customers side pipework or internal plumbing loss	es 29
Figure 22: Conceptual System Model for the Smart Meter Application	30
Figure 23: Initial functional mock-ups for the smart meter application	31
Figure 24: Co-design feedback	33
Figure 25: Co-design affinity mapping	33
Figure 26: Revised wireframes from co-design session	34
Figure 28: Customer Smart Meter Application	35
Figure 29: Water consumption infill in operation	36
Figure 30: Daily and Historic Usage for Customer	36
Figure 27: prototype customer smart phone application displayed in a resized web browser	38
Figure 31: Burst Detection Schematic	39
Figure 32: Burst Detection Model Development	40
Figure 33: Bust Localization Model Development	
Figure 34: Impact of Search Radius on Leak Localization Accuracy	45
Figure 35: Flutter layout differences, iOS (left) and Android (right)	51

List of tables

Table 1: Logic for the type of letter received by the customer	21
Table 2: Greater Torrington Simulated Pressure and Flow Network Sensors	44
Table 3: Impact of Number of Search Areas on Burst Localization Accuracy	46
Table 4: Comparing Mitigation tool's proposed solution versus default repair method	46

List of Acronyms/Glossary

AMI Automated Metering Infrastructure, allowing the water meter to be read remotely over a Low Powered Wide Area Network (LPWAN)

EWMA Exponential Weighted Moving Average

F4W Fiware4Water project

LPWAN Low Powered Wide Area Network

NGI Next Generation Internet

The Next Generation Internet (NGI) initiative, launched by the European Commission in the autumn of 2016, aims to shape the future internet as an interoperable platform ecosystem that embodies the values that Europe holds dear: openness, inclusivity, transparency, privacy, cooperation, and protection of data.

WDS Water Distribution SystemWPL Work Packages Leaders

SWW South West Water