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Executive Summary 

Deliverable 3.4 describes the role of data within demo case #4: Smart Meters and Customers (United 
Kingdom) and specifically concerns data produced / stored in the Stellio broker, as captured from Diehl Altair 
V4 15MM smart meters in the Great Torrington pilot and SWW customer data from various sources.  
 
Section I of the report details the key values in the Diehl Altair V4 15MM smart meter dataset 
(waterConsumption, minFlow and alarmFlowPersistence) and describes how minFlow and 
alarmFlowPersistence are used to determine and measure customer-side leakage events. 
 
Section II details the approach taken for dealing with missing waterConsumption readings, typically due to 
over-the-air meter data capture failing due to parked vehicles on, or near to, the smart meter transponder, 
where ‘missing’ readings are estimated and in-filled with actual data on a linear scale. 
 
Section IV details the approaches taken to extract customer ‘cluster’ data, i.e. grouping customers together 
by consumption, environmental and property data, using a range of data sources provided by SWW (Table 
2). 
 
Section V describes approaches to the visualisation of smart meter data through the Stellio context broker, 
with both the utility and customer-side applications presented. The over-arching goal of data visualisation 
was to provide the two different user groups (SWW staff and SWW customers) with different presentations 
of the same data to both: 1) ensure data consistency between both user groups and 2) provide data 
presentations that met the needs of both user groups. 
 
Section VI details optimisation approaches that were undertaken in order to minimise the time taken to 
process Stellio data and present it to users. This was particularly evident in functions that processed the 
entire Stellio data set, e.g. collecting leak data for the utility app and collecting overall population 
consumption for the customer app. Optimisations were centred around moving Stellio data onto a traditional 
database and employing ‘traditional’ SQL operations and caching frequent daily requests.  
 
Section VII records the conclusions and perspectives of the application development project and highlights 
the need for a better understanding of the FIWARE/Stellio/Docker ecosystem when starting a project of this 
nature, the generally positive suitability of Django and Flutter as a full-stack platform for mobile 
development, and the pivotal role of IT support in a large organisation. 
 

Section VIII records the recommendations for future work in this area. 

 

Related Deliverables 

D1.1 Requirements from Demo Cases 

D4.5 FIWARE4_ Smart Metering and Citizen Engagement 
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List of Acronyms/Glossary 

Text: Calibri, 11 (alphabetic order). Acronyms in bold. Full name, normal. Definitions (if needed) in italics. 
 
F4W Fiware4Water project 
NGI Next Generation Internet 

 The Next Generation Internet (NGI) initiative, launched by the European Commission in the 
autumn of 2016, aims to shape the future internet as an interoperable platform ecosystem that 
embodies the values that Europe holds dear: openness, inclusivity, transparency, privacy, 
cooperation, and protection of data. 

OTA Over the air, wireless transmission of data 
WPL Work Packages Leaders 
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Introduction 

The goal of the SouthWest Water demo case was to implement a FIWARE enabled pipeline to retrieve 
consumption data from smart meters and provide this data to customers via a smartphone application 
to drive positive changes in water use behaviour, reduce consumption, and reduce customer water 
bills. The data will also be used operationally to detect customer leaks.  

Figure 1 presents the conceptual model of the proposed smart metering solution. Customer 

consumption data is collected from Sigfox smart meters daily and stored in a FIWARE-Stellio context 

broker. Customers can access their data through a mobile phone app. Value-add data is available to 

customers through the interrogation of existing customer data, both the customer’s data and the pilot 

case data, as a whole or subsets thereof, and potentially augmented with data from other sources. 

 

 
Figure 1: Conceptual architecture 

The demo case has been implemented as a collection of Docker containers, with one container 
(provided by EGM) implementing the Stellio context broker and the other implementing the customer-
side and utility-side applications. Both applications are implemented using Django, with the customer-
side app providing functionality primarily through a mobile app implemented in Flutter. The Flutter 
app is also available as a development-side web application, though this is not intended for customer 
use. The utility-side app is realised as a web app. 
 

I. Data Integration 

For this pilot, a water consumption smart model was developed as a digital proxy of the physical smart 
meters used in the pilot, Diehl Altair V4 15MM. Data was collected from the physical smart 
metersdaily, with key attributes of the water consumption model being waterConsumption, minFlow 
and alarmFlowPersistence. 

I.1. waterConsumption 

This attribute records total water consumption since the meter has been installed and can be 
considered functionality equivalent to traditional ‘elapsed’ meters. Periodic consumption can be 
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determined by subtracting daily consumption figures. However, data is not collected with 100% 
reliability due to OTA (over the air) data transmission failures, typically from parked vehicles blocking 
data transmission, and other operational issues, so care must be taken when determining daily 
consumption figures.  

  

I.2. minFlow 

This attribute records the minimum flow level observed by the meter during a 24hr period. Ideally, this 
should be zero as non-zero values are indicative of continuous flow, ‘leak’. This value is used with 
alarmFlowPersistence to determine the severity of leak.  

 

I.3. alarmFlowPersistence 

This attribute translates the minFlow attribute into a qualitative term and is used for determining the 
severity of a continuous flow / leak situation. The Sigfox meter generates the following terms: 'Nothing 
to report', 'no persistence', 'In progress impacting persistence', 'In progress persistence' and 'Past 
Persistence during the period']. 
 
In the application, 'In progress impacting persistence' and 'In progress persistence' are used to define 
a leak for the daily reporting period. 

 

II. Data processing   

Smart meter data is collected on a rolling daily basis (with several meters being processed every hour, 
rather than processing all meters at a given point in the day) and stored in Stellio using the 
WaterConsumption entity. 
 
Although the OTA daily data collection was generally reliable (with data being collected far more often 
than not), there were periods where data was not collected, with two broad use cases of collection 
failure; 1) data was not collected due to an OTA transmission failure, which presented as isolated days 
of no data collection for a given meter or 2) data was not collected due to IOT Agent failure, which 
presented as multi-day data collection failures across all of the meters. 
 
Whilst this was not a huge issue for the system, as consumption is measured as total since meter 
installation, rather than absolute daily consumption, it did make visualization and data processing over 
given periods awkward due to the potential for arbitrary gaps in data. 
 
To address this, functionality was developed to automate the production of ‘infill’ data that would 
create estimated consumption values between known start and end points, Figure 2.  This approach 
was particularly useful to visualize historic consumption data for the customer app.  
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Figure 2: Water consumption infill in operation 

Infill was only undertaken for water consumption as its role was primarily to visualize rather than 
logical/analytical. Figure 2 illustrated the two failure modes for data collection, with the individual 
orange estimates shows isolated data collection failure occurrences and the large band from 2020-7 
to 2020-11 showing where longer term data collection failure had occurred, due to IoTAgent failure. 

 

III. Implementation of Smart Data Models & Context Broker 

The pilot maintains two smart data models: water consumption and consumer info. The water 
consumption model captures all the relevant data from the smart meters, in particular 
waterConsumption, minFlow and alarmFlowPersistence. 
 
The consumer information model is a self-reporting model that is used for user clustering. It comprises 
of two parts: customer information, and customer settings. Given the experimental nature of 
clustering, the information component stores a set of cluster properties and value choices that users 
may select, whilst the settings component stores the current selection of those properties. This 
approach allows cluster properties to be changed on demand and provides a data-driven scaffold to 
allow users to set novel properties in the customer-side app without needing to update the app 
codebase. 
 
The context broker was provided by EGM and realised as a Stellio broker. 
 

IV. Water use clustering  

The presented work aims at providing the water supply organization with an insight into identified 
behaviour across urban households, by analysing historical values of consumption and other factors 
such as economic, social, and weather parameters. An Artificial Intelligence (AI) data-driven ensemble 
approach is proposed, which combines multiple clustering algorithms with time-series data analytics 
and advanced dimensionality reduction techniques. As a result, a predictive model is obtained which 
provides a real-time classification, among different behaviour groups, based on any given customer’s 
short-mid and long-term historical and static information. 
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IV.1. Data 

The provided datasets were composed of multiple files, they are available in .csv format and are stored 
off-line, as can be seen in Table 1: 
 
Table 1 Water consumption dataset description 

Title Description Method of 
acquisition 

Sampled Properties.csv A table of sampled properties, 
sample types and metadata. 

Received 
by email 

Sampled Property Occupancy.csv A table of occupancy records for 
each sampled property. 

Rainfall Stations 4200m Grid.csv A table of 674 rainfall stations for 
which data has been retrieved 
since January/2019. 

Temetra Consumption Data.sqlite Consumption data from customers 
in the Temetra sample. 

AMRConsumptionData.sqlite Consumption data from customers 
in the AMR sample. 

PITConsumptionData.sqlite Consumption data from customers 
in the PIT sample aggregated to 15 
minute time period. 

WaterUse_SampledCustomers_DataSummary.csv Dataset containing financial, social 
and demographic properties of 
households. 

PIT__Data_15min_2018_2021_NoOverlaps.sqlite Consumption from PIT sample with 
gaps filled. 

 
The data set used to demonstrate our developments, shown in Table 2, composes of high-resolution 
time-series water consumption data collected from 3 different types of smart sensors scattered across 
the area, with dates in the range from 2016 to 2021 at an interval between 15-minutes and a day. 
 

Table 2 Sensor reading grouped information 

Feature Number of 
samples 

Description Unit No. of 
registers 

Sensor type 1 
regadings 

562 Water consumption registered 
from the sensor with the 
highest definition, in a 15-
minute interval.  

Litres/15 
minutes 

42,414,797 

Sensor type 2 
readings 

2111 Water consumption registered 
from sensor 2 in a 30-minute 
interval. 

Litres/day 5,630,035 

Sensor type 3 
readings 

335 Daily water consumption in 
litres registered from sensor 3. 

Litres/30 
minutes 

820,313 

Rain information - Rain historic information and 
location of rainfall stations 

mm, string 2,047,668 
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Moreover, it also includes a rainfall dataset containing the height in millimetres with irregular intervals. 
Lastly, the data set containing demographic characteristics and financial level segmentation of said 
households that are presented in Table 3. Moreover, all presented features were linked to the 
households and were supplied along with the consumption data sets. 
 
Table 3 Demographic and financial features 

Feature Description Unit N. of registers 

Financial category Powerful individual level and financial 
services segmentation, built based on 
IPSOS’s Financial Research Survey. 

Categorical 4,918 

Net worth 
category 

Individual classification of consumers 
based on their net worth, combines 
income, family composition and 
financial assets. 

Categorical 4,918 

Demographic 
category 

Demographic and neighbourhood 
characteristics 

Categorical 4,592 

Garden Size The floor size of the property’s 
garden. Units are in m². 

m² 5,090 

Building Size The floor size of the property’s 
building. Units are in m². 

m² 
 

5,090 

Household Size Estimated number of persons that 
resides on the property. 

Integer 5,111 

Children at home Estimated number of children residing 
on the property. 

Integer 5,111 

 

Data preparation 
 
While working with time-series data, some pre-processing steps are necessary because either error 
during data collection may occur or some specific behaviour registered in the data can negatively affect 
the development of ML models. 
 
The tasks performed in the earlier steps of the data analysis were the analysis of outliers and 
consecutive zeroes in the historic water demand data. It was decided to compare every value of the 
historic data set against a defined threshold at a local (property) scope to deal with outliers. The values 
that meet this criterion, as seen in equation (1), are then replaced by its local median value; this 
process was also applied to household characteristics data fields as well. 
 

    𝑉𝑎𝑙𝑢𝑒 > (𝑋 + 3 × 𝜎)      (1) 

  

where 𝑋  = mean value and 𝜎  = standard deviation, both calculated locally 
 
From data analysis, it was found that 30 or fewer days with consecutive zeroes in readings can be 
considered vacations, so it was decided to delete from the time series any period with more zeroes 
than that. 
 
Moreover, missing and negative values were treated as well. In this case, such values were replaced 
by the average value of the corresponding data field. 
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Assemble of daily consumption time series joined data set 
The strategy at this point was to employ Dynamic Time Warping (DTW) as a distance-metric into the 
K-Means algorithm. DTW can be defined as an algorithm used for measuring similarity between two 
temporal sequences (time-series), which may vary in shape and length. As described by [1] it is possible 
to efficiently employ DTW into a K-Means to cluster time series of different shapes and lengths, 
enabling a dynamic and more flexible comparison.  
 
The choice of combining the time series of each household (including all different smart sensors) 
resulted in a training dataset where each register corresponded to a consumption time series of a given 
household. The frequency of the readings was resampled to be at a daily level, to make use of all 
sensors and achieve records with a reasonable number of registers. Table 4 shows the data model of 
the joined data set at this point, and later, it will be adapted to the accepted shape of the clustering 
algorithm. 
 

Table 4 Data model for the first clustering algorithm 

Data field Description Unit 

Readings Water consumption value, joined between all 
sensor and resampled to a daily value. 

Litres/day 

Date Date and time of registered event Datetime 

Reference The household identification String 

Season Which season the register belongs to String 

 
Before applying the clustering, the Reference and Season data fields will be used to identify different 
time-series and use them on its respective model. In Figure 3 
 

 
Figure 3 Time-series grouped by properties 

Assemble of the household characterization data set 
The purpose of the household characterization data set of length (n) of 2715, being each register a 
reference for a household, is to represent all quantitative and qualitative static (non-time-series) data 
that is available for each household.  
 
Almost all available data fields were considered resulting in a high-dimensional data set, including for 
each register (household): a) Average consumption of weekdays and weekend, and weekly values for 
each season; b) Properties characteristics such as building and garden size; c) Rainfall data; d) 
Occupancy, social and financial categories (which were converted from categorical variables into 
binary fields); the data set achieved in the end had around 147 different features. Some of the latter 
data fields that was previously described can be observed in Figure 4: 
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Figure 4 Financial category sub-segment types 

 
Furthermore, this data set is composed of both numeric features and categorical data fields, as can be 
observed in Table 5 that follows, the categorical features were later converted to indicator variables. 
 
Table 5 Aggregated consumption values 

Data field Description Unit 

Seasonal weekday 
average 

Water consumption average value on 
weekdays (for each season). 

Litres/day 

Seasonal weekend 
average 

Water consumption average value on 
weekend days (for each season). 

Litres/weekend 

Seasonal weekly 
average 

Weekly water consumption average value 
(for each season). 

Litres/week 

Daily rainfall average Daily average rainfall calculated for each 
household, based on the closest rainfall 
station. 

mm/day 

Max value Maximum consumption value. Litres 

Mean value Mean consumption value. Litres 

Percentiles (25, 75) Percentile values of consumption (25% 
and 75%) 

Litres 

Property characteristics Characteristics include garden and 
building size, household size, number of 
children at home, etc. 

m², integer 
 

Socio-economic 
categories 

General demographic and neighbourhood 
characteristics (6 categories and 49 sub-
categories).  

Categorical 

Financial categories Individual power’s value, based on a 
research survey (10 categories and 50 
sub-categories). 

Categorical 

 

IV.2. Models 

The solution is composed of three modules. The first module covers a household consumption 
clustering based on time-series data similarity using the Dynamic Time Warping (DTW) distance metric, 
allowing time-series of different lengths and shapes to be compared [2]. In parallel, the second module 
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processes the static sampled household characteristics and meteorological features aiming to reduce 
its dimensionality via its latent representation identification. This step is conducted using a Deep 
Neural Network (DNN) implementation of a type of feedforwarded neural networks called 
Autoencoder. In this case, it is specifically denominated a DNN because this Autoencoder have more 
than three layers when considering the encoder and decoder. 
 
Finally, the outputs of modules one and two are combined and clustered to generate groups that are 
representative of the high-resolution input data set and that are suitable for understanding the 
household’s consumption behaviour. 
 
The solution’s architecture is represented in a flowchart format, where each section or model is 
composed of the input data model and the respective algorithm, as can be seen in Figure 5. 
 

 
Figure 5 Solutions flowchart 

 

Cluster Assessment (K-Means + DTW) 
Different seasons can influence water consumption behaviour, because of that, daily consumption 
time-series data is segmented into seasons, and individual ML models were generated for each period 
[3].  The split of seasons was executed following United Kingdoms’ season definition as follows: a) 
Spring was the months of March, April, and May; b) Summer, June, July, and August; c) Autumn, 
September, October, and November; and lastly, d) Winter was composed of December, January, and 
February.  
 
Additionally, the time series data were also separated by year. We have decided to work exclusively 
with the years 2017 and 2018, mostly because 2019 had some gaps on it during the crucial season of 
summer, and 2020 was thought to be not a representative year due to the behaviour change that the 
sanitary crisis brought [4]. 
 
K-Means is an unsupervised learning algorithm widely used for data clustering. K-Means works by 
randomly assigning k cluster points in the hypervolume of the data set, then it assigns each data 
register to the closest cluster centre and finally recomputes the cluster centres based on current 
memberships, this process is repeated until it converges on the defined criterion.  
To find the ideal number of clusters, the following scoring metrics were used: 

 Elbow method (EM): Heuristic used in determining the number of clusters, consists of plotting 
the explained variation (also known as the Sum of Squares of the distance between data 
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points, SSE) against the number of clusters, where it is visible that after the inflexion curve 
(resembling an elbow) the model fits better. 

 Silhouette Coefficient (SC): Compares how similar a sample is within its cluster when in 
comparison with other clusters, take values between -1 and 1, with values closer to 1 meaning 
well-separated clusters. 

  
Additionally, this K-Means model was trained using random initialization of centroids.  
 

Dimensionality Reduction and latent space identification 
(Autoencoder) 
It is proposed the use of an AutoEncoder (AE), a specific DNN architecture, for the dimensionality 
reduction task [5]. An AE is widely used for noise reduction and image compression. It is composed of 
three main segments which are the encoder, responsible for shrinking the original data into 
compressed data into a second segment known as the bottleneck, and a third one called the decoder, 
which does the reverse work of the encoder, transforming the low-dimensional data into the original 
shape. After this process, the output is then compared to the input to see if the DNN managed to 
reconstruct the data based on its compressed state reasonably well. In this schema, the bottleneck 
layer is trained to identify the latent space of the input information and can be used for dimensionality 
reduction purposes with non-linear capabilities. 
 
The strategy is to extract the low-dimensional data from the bottleneck, the latent space, to use as an 
encoded feature that represents every property. Moreover, this extraction was only made after that 
the AE evaluation (based on the reconstruction of data) was acceptable. 
 
The layers defined for our DNN were the following: a) Encoder, composed of Linear and ReLU layers 
with the input of 147 features and output of 3 features; b) Bottleneck data; c) Decoder set of layers 
including Linear and ReLU with the input of 3 features and output of 147 features. This structure is 
normally adopted for dimensionality reduction. Usually, the bottleneck layer is of a smaller size for 
ensuring that the dimensionality will be reduced after the encoder layer. Aside from the structure, 
some hyperparameters were optimized for this NN: 

 Optimizer: Adam, is an extension of stochastic gradient descent that is broadly used for deep 
learning applications.  

 Learning Rate: 1e-2, parameter tuned to achieve an acceptable performance after 1000 
epochs, values considered on hyperparameters optimization: 1e-2, 1e-3 and 0,1. 

 Weight decay: 1e-5, a parameter used to penalize complexity, being a way to contour 
problems of underfitting or overfit in NN. Values considered on optimization: 1e-5, 1e-4, and 
1e-3. 

 Criterion (Evaluation): MSE Loss, measures the loss as Mean Squared Error between each 
element in input x and target y. 

 

Clustering Ensemble (K-Means + Euclidean) 
Ensemble techniques applied to supervised and unsupervised learning algorithms can result in a better 
performance overall [6]. More specifically, combining algorithm outputs for the execution of a K-
Means can provide clusters with a higher similarity and quality. 
 
Joining the data is an important step of the study, and that is accomplished by converting the cluster 
labels from the first model (FM) to indicator variables (binary) and appending the encoded features 
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extracted from the latent space of the AE. The joining is made at a household level, meaning that each 
register that represents a property, have both outputs combined and used as training data for the next 
K-Means model. The respective data model can be observed in Table 6. 
 
Table 6 Autoencoder datamodel 

Data field Description Unit 

Encoded feature 1 First AE encoded feature. Float 

Encoded feature 2 Second AE encoded feature. Float 

Encoded feature 3 Third AE encoded feature. Float 

Label 2017 Cluster label that was assigned to the 
2017 model (K-Means + DTW) 

Integer 

Label 2018 Cluster label that was assigned to the 
2018 model (K-Means + DTW) 

Integer 

 
The two latter variables were converted into binary indicator variables, so, finally, the data set would 
be composed of 18 features. Once again, one data set per season was made to train the individual 
models (one for each season). 
 
Like the FM, this K-Means implementation adopted the random initialization of centroids and selection 
of value k made by analysing the EM, SC, and Calinski Harabasz (CH) metrics. Moreover, this model 
uses the Euclidean method as a distance metric which is widely adopted by default in the industry. 
 
Another different step in this model was the necessity of scaling the data set beforehand due to the 
different nature and numeric scale of joined outputs which composes the training data set. 
 

IV.3. Evaluation 

First model (K-Means + DTW) 
As defined earlier, four different K-Means models have been generated, each one with its own data 
set (separated by season). The choice of the value k came based on the analysis of the values of the 
EM (SSE) and the SC. The value can be observed in Table 7. 
 
Table 7 Evaluation of the first model 

Season SSE for 
k = 6 

SSE for k 
= 7 

SSE for k 
= 8 

SC for k = 6 SC for k = 7 SC for k = 8 

Spring 1.3342 1.2845 1.2760 0.0535 0.0650 0.0476 

Summer 1.3383 1.2841 1.2868 0.0573 0.0536 0.0456 

Autumn 1.3534 1.2821 1.2797 0.0567 0.0587 0.0609 

Winter 1.3228 1.3233 1.2874 0.0505 0.0458 0.0471 

 
The values marked in bold were the choices for the number k of clusters. Internal discussions were 
held with the water utility in which was decided to keep a low number of k clusters, with the objective 
of making the analysis easier and simpler to understand. So, based on it and the metrics obtained 
(higher value for SC and lower value of SSE), the chosen k value for each model was: 8. 
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Second model (Autoencoder) 
The data that resides in the bottleneck is the one that will be used as a low-dimension version of the 
data, given that the decoder made a good job reconstructing it. The Autoencoder also allows for use 
of non-linear data. On Table 8 it is possible to see the number of trainable parameters for each layer 
of the DNN, the values marked in bold represents, respectively: dimensions of input, bottleneck layer 
dimension and the decode output dimension (same as original data). 
 
Table 8: Autoencoder’s Trainable parameters table 

Module Trainable parameters 

Input 148 

encoder.0.weight  9472 

encoder.0.bias 64 

encoder.2.weight 768 

encoder.2.bias 12 

encoder.4.weight 36 

encoder.4.bias 3 

decoder.0.weight 36 

decoder.0.bias 12 

decoder.2.weight 768 

decoder.2.bias 64 

decoder.4.weight 9472 

decoder.4.bias (output) 148 

 
 
The AE was evaluated by measuring the loss metric obtained by comparing the reconstruction made 
by the decoder and the input data, through all the epochs of training, as defined earlier. Moreover, an 
additional measuring during the validation phase was implemented. Those values can be observed in 
Table 9 and in Figure 6. Additionally, 70% of the data set was used to train the model, while the other 
30% was used to validate it. 
 
 
Table 9 Autoencoder epoch evaluation 

Epoch Train loss 
(MSE) 

Validation 
loss (MSE) 

1 0.9893 0.4063 

200 0.4872 0.3547 

600 0.4071 0.3285 

1000 0.3889 0.3131 

 

 
Figure 6 Autoencoder loss curve 
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Third model (K-Means + Euclidean distance) 
To evaluate the ensemble model, three different metrics are employed. The previously discussed EM 
and SC, but also the Calinski Harabasz index (CH), which is a metric best suited for Euclidean distance-
based clustering. 

 Calinski Harabasz Index (CH): Also known as Variance Ratio Criterion (VRC), it represents the 

ratio between the within-cluster dispersion and the between-cluster dispersion, higher 

values mean well-separated clusters. 

As can be observed in Figure 7, the SC values for each model differ, but, overall, they represent well-

defined clusters while maintaining a reasonable low value for k. Moreover, the same figure also 

shows the EM values for the ensemble model. 

 

 
Figure 7 (a) Elbow and (b) Silhouette evaluation for the different clusters 

Given those analysed metrics and discussions related to the number of clusters, the optimal number 

of k chosen for the third model (TM) was, respectively: 8, 7, 8 and 8. 

 

Next, in Table 10, a summary of the evaluation metrics for each ensemble model is represented, based 

on that, it is possible to conclude that the spring and autumn models achieved the highest metrics and 

the summer model, had the worst performance overall. 

 
Table 10 Evaluation of the final model 

Season No. of clusters SSE SC CH 

Spring 8 9855.568 0.28443 112.6678 

Summer 7 11484.491 0.25049 106.3353 

Autumn 8 9871.417 0.28479 111.5321 

Winter 8 10120.917 0.28838 109.7568 

 

On the other hand, one chosen form of validation to compare the first clustering result (K-Means + 

DTW) with the ensemble model, and to identify and observe the impact that the encoded features 

finally had on the final set of clusters, is the Sankey Diagram (SD). The SD is useful to observe 

continuity between distinct sources, and it is represented in Figure 8, where FM means First Model 

and TM means Third Model. 

The TM cluster 2 is a brand-new cluster, being composed of many properties that before were assigned 
to another cluster, but, in general, we can affirm that the remaining clusters were assigned close to 
the result of the FM. Moreover, we can conclude from the SD that the encoded features had an impact 
on the new assignation of clusters, but without changing most of the clusters defined by the FM. 
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It is important to note that, this proposed solution can be easily expanded by adding more years of 
data, which can result in a better clustering result. 
 

 
Figure 8 Sankey Diagram, continuity of clusters between models (considering summer models) 

 
To expand the analysis, Figure 9 was developed by calculating the mean value of some properties per 
cluster, to produce some comparative base between the different assigned clusters.  

 

 
Figure 9 Aggregated features of the different output clusters for each season 

The values were calculated by taking the mean value of a given feature considering all properties that 
resides within the respective cluster. 
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Lastly, a plot showing the distribution of kind kernel density estimation (KDE), which is a non-
parametric way to estimate the probability density function of a given variable, in our case of the water 
consumption variable in each cluster. On the x-axis we can observe the different models for each year 
and on the y-axis each cluster, and can be observed in Figure 10. 
 

 
Figure 10 Cluster distribution for each season 

Through the normal distribution of this variable, it is possible to observe which clusters concentrate 
the properties with the highest consumption in each model/year and can serve as a base for 
comparation when considering only the water consumption feature. 
 

V. Data Visualisation 

A key goal of data visualisation and presentation in the demo case was to share data between utility 

and customer side apps such that customers would not be surprised by data plurality, i.e. SWW staff 

reporting different values to those that customers saw on the customer app. 

To achieve this goal, Stellio was the data authority for both utility and customer-side applications. 

 

V.1. Utility Side Data Visualization 

Key goal of the utility app was to provide utility staff with a way of determining which consumers were 

likely to have leaks in their properties. Although the alarmFlowPersistence meter property can give 

some indication into potential leaks, utility staff developed an approach that also incorporated the 

consideration of multiple properties: 

1. Number of leak alarms (alarmFlowPersistence) over a given period 

2. Consumption over a period compared with previous period 

3. Weekly consumption over a given value  
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These considerations were wrapped into queries for Stellio with the results presented in numerical 

and graphical formats, Figure 11. 

 

 
Figure 11: Utility app leak reporting 

 

V.2. Customer Side Data Visualization 

The key goals of this app were: 1) give customers an insight into their daily and historic consumption 

and 2) give customers an insight into how their consumption measures within the overall consumer 

group of Gt. Torrington, with consumption data presented numerically, and graphically. 

 

Figure 12 details screenshots of the customer app. The image on the left shows the daily consumption, 

with the customer’s consumption for the previous day (50 litres on 15/11/2021) and a summary of 

consumption for the entire pilots, detailing the total consumption for that day, the average 

consumption per customer and where the customer’s consumption ranks within the Great Torrington 

group (2nd highest out of the ten). In addition, the daily usage records the lowest (above zero) 

consumption for the group and the highest, to give customers a clear idea of where they sit within the 

group. 

 

The centre image shows historic consumption (set over the last 31 days) and provides the customer 

with a similar breakdown of consumption in the group, but over a longer timeframe. 

 

The image on the right shows a graph of consumption over the same period. 
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Figure 12: Customer App showing daily consumption (left), historic consumption (centre) and consumption graph (right) 

 

VI. Platform Optimization 

VI.1. Data processing 

Initial development work with Stellio was centred on a ‘single customer’ approach, with requests for a 
customer’s current or historic consumption, using the ngsi-ld/v1/entities and ngsi-
ld/v1/temporal.entities requests.  
 
However, iterating through customers to collect all current or historic data resulted in long periods of 
data collect as http requests were queued up. This was largely addressed by threading http requests, 
though this provided to be largely insufficient when multiple requests were required, particularly for 
building the customer app ‘consumption narrative’ where a customer’s consumption was ranked 
against group consumption. 
 
One approach to address this in the future, in particularly with the open-ended queries of the utility-
side app was moving Stellio data into a PostgreSQL database and using SQL to query data. Although 
Stellio and ngsi-ld/v1 do provide some support to query the underlying context broker, missing 
consumption data makes this a non-trivial exercise and running a daily PostgreSQL building process 
allows data to be suitably processed. 
 
It is assumed that there is a more efficient data management approach in extending the Stellio dataset 
to store daily consumption in an entity that is separate to the WaterConsumption model, though our 
limited understanding of Stellio and a desire to avoid updating the live Stellio broker left this approach 
untried. 
 

VI.2. Data visualisation: Utility-side App 

The utility-side application was designed and implemented to be run in a standard desktop landscape 
mode browser within the South West Water infrastructure and has been implemented as a fairly 
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responsive application, insofar page content will adjust to reflect differences in screen size and aspect 
ratio to a large degree, Table 11: Utility-side app responsive presentation, near portrait (left) and 
landscape (right), and where this is not possible, the browser will make the screen scrollable. 
 
 

 

 

Table 11: Utility-side app responsive presentation, near portrait (left) and landscape (right) 

 
 

VI.3. Data visualisation: Customer-side App 

The customer-side app was designed (D4.5, V.4) as a portrait app for smart phones and implemented 
in Google’s Flutter API which supports responsive UI presentation to a large degree. The app has been 
configured to present only in portrait mode and is unresponsive to changes in orientation, i.e. the UI 
will remain in portrait mode if the phone is rotated to landscape mode. The app does not support 
tablet presentation modes (4:3 / 3:4). 
 
Much of the Flutter UI was developed using the flexible(flex) class which allows UI screens to be 
subdivided in logical, rather than physical, estate (like Bootstrap’s grid system). This allows Flutter to 
resize screens around ‘similar’ aspect ratios, e.g. broad portrait of 9:16 to 9:19.5, without losing 
content off the edges of the screen. Table 12 shows how content is scaled across portrait devices of 
differing resolutions and aspect ratios 
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Table 12: Flutter responsive apps, android and iOS(top and right), browser flexing content (bottom) 

 
A ‘development testbed’ version of the Flutter app was created as a testing web page for the customer-
side Django app. As a landscape mode application, the portrait mode Flutter app was effectively 
stretched to fit the real estate available (as part of the flexible approach), Table 12. This could be 
addressed if the app was to be provided as a web page 
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VII. Conclusion and Perspectives 

VII.1. FIWARE / Stellio 

In general, Stellio worked well for the project and FIWARE appears to be a very useful framework for 

hosting smart metering data. In particular, storing entities as JSON data completely removed the need 

to create explicit database tables and the temporal evolution (ngsi-ld/v1/temporal/entities) removed 

much of the need to do complex data management. 

 

There were little to no issues with working with the Stellio context that EGM set up, though there 

appeared to be occasional issues with the Sigfox / IOT Agent connection where data updates were 

‘lost’ for several periods in the project. 

 

The main operational issue with Stellio stem from requirements to perform multiple temporal requests 

across the entire smart meter dataset in order to determine total consumption or total leak counts. 

Attempting to perform these requests in a ‘for each smart meter ‘approach took a significant amount 

of time, >1min for 100 smart meters, as requests were all queued on completion. Whilst this was 

reduced by threading calls to the broker, it suggests either a poor choice of algorithm or a weak point 

for the broker, it is suspected that it’s more an algorithmic issue that attempts to use the broker in a 

way it is not designed. 

 

VII.2. Development environment 

For this project, the Stellio broker environment was treated as a ‘live’ service and care was taken to 

not ‘break’ the service, with much of the app development being undertaken either using the live 

Stellio service as a data source or working in custom development environments. 

 

Using the live service as a data source worked for much of the development process, except where 

there were needs to create edge case data in order to generate leak alarms, excessive consumption 

and so on. For these situations, a separate Stellio broker was created and populated with synthetic 

data. This was achieved by creating local Docker applications running the Stellio docker-compose 

settings.  

 

The resource requirements of Stellio did make it difficult to run remote Stellio instances, with Stellio’s 

failures being difficult to interpret. 

 

VII.3. Limited understanding of FIWARE/docker  

Many of the development issues encountered in this project stem from limited understandings of 

FIWARE and containerisation and it would have been extremely helpful to have had more orientation 

at the beginning of the project in both areas. 

 

Although having Stellio and Sigfox setup at the beginning of the project was a great timesaving, it did 

create a mindset of a ‘live’ environment that should not be developed on, for fear of breaking it and 

losing live data. This led to development approaches that were not optimal, in particular, in how the 

demo case deals with processing Stellio data.  
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In hindsight, it would have been preferable to perform infill and leak processing as notification when 

Stellio received new meter data for each meter, rather than taking the approaches that have currently 

been implemented. However, to use notifications, URLs would need to be provided for the broker 

which couldn’t have been done easily in a development environment, and it would have meant writing 

entities to the live service. 

 

The project would have benefited from developing tools to archive and rebuild broker contents in 

order to have data security, which would have made it far less of an issue to add to and extend Stellio 

entities as well as setting up development and test environments. It also would have been extremely 

helpful to have been able to capture and duplicate Sigfox data. 

 

The broad solution to these issues would have been to create a more typical dev-test-live environment 

where functionality could be developed in the development environment, then moved to a test 

environment, and finally published to the live environment. Docker can be an enabling technology for 

this approach to devops and it was a technology we came too late in the project. 

 

 

VII.4. Django (app server development) 

Alongside Stellio, the project used Django as a server framework for both the utility and customer-side 

applications and was selected as South West Water’s preferred web development framework. In 

general, Django worked very well for the task and provided a lot of functionality to aid development. 

 

As an established and industry-standard framework, there is a lot of support for Django on the internet 

and most of the ‘novel’ problems that we encountered had already been encountered before with a 

multitude of solutions and work arounds available, particular in areas such as integration with Flutter 

and mobile http requests. 

 

The project used independent Django servers for both apps (utility and customer) as a broad security 

measure to ensure that the customer request framework could not be used to access utility only data. 

Both servers used a shared python package that initially provided an interface to Stellio, so that apps 

could not directly communicate with the Stellio broker. This was revised towards the end of the project 

with the implementation of an intermediary postgres server that stored daily customer data to enable 

the utility broker to make more complex leak / usage queries. 

 

VII.5. Flutter (mobile app development) 

Flutter was used to develop the mobile app and was selected, in part, for its ability to create reactive, 

cross-platform (android, iOS and web) UI. 

 

In general, Flutter worked well and has a lot of support (mainly from Google) but does give the 

impression that it superseded by react.native. 

 

Flutter’s USP is that it is a responsive and cross-platform framework and whilst the amount of platform-

specific code is fairly small, there are still platform-specific requirements, particularly with how both 



 

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx  29 / 32 

platforms (iOS and Android) deal with app layout. This can be seen in Table 13, where the iOS 

application to the left has 4 ‘action’ icons at the bottom of the screen, whilst the Android application 

to the right has the same functionality in the hamburger menu to the top left of the application. 

 

 
Table 13: Flutter layout differences, iOS (left) and Android (right) 

Flutter’s responsive presentation engine works well with content generally being resized and organised 

correctly for different resolution and aspect ratio mobile screens, though this can lead to large 

amounts of white space and UI designed for portrait mode screens tends not to automagically resize 

for landscape mode, but this is to be expected. The cost of Flutter’s responsive presentation is that UI 

components are developed in mark-up code which tends to be time-consuming to create and iterate 

and it would make more sense to use a visual editor to layout UI in a more aesthetic manner. 

 

Flutter uses Dart as its underlying programming language which is transpiled into JavaScript. In general, 

Dart is a fairly clunky language which concentrates on the wrong things (code layout) and obfuscates 

straightforward JavaScript concepts (promises) into ‘Future’, which results in awkward http.request 

processing workflows. 

 

Flutter also highlights development issues with iOS and Android development. Whilst AndroidStudio 

allows debug apps on both mobile platforms to be debugged directly, the apps only exist during 

debugging sessions and the applications must be built onto the phones to be used outside of 

AndroidStudio. For Android, this is a very simple process, the build option is selected and an apk file is 

generated. This can then be installed on any android device. For iOS, the build option results in the 

creation of an xCode project which must then be loaded into xCode on a mac and the project built. To 

install the app onto iOS developers, they must be either setup for development or available through 

TestFlight. Generally, this makes developing for iOS a time-consuming activity. Android should be 

considered as the primary development platform, just purely to speed of iteration. 
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VII.6. IT policies  

For this kind of development (context brokers, servers, and mobile apps) it’s apparent that 

development needs to be geared around the availability of internet enabled, and secure, servers that 

developers have access to. For much of the project, development was only really possible on local 

development machines and low-performance servers that were incapable of hosting Stellio. 

 

Development experiences with Heroku showed that whilst it’s possible to host services on remote 

infrastructure-as-a-service services, costs ramp quickly and the services tend not to provide quite what 

is really needed for development. Some development experiments were undertaken with Azure, but 

nothing enough to provide any concrete conclusions. 

 
 

VII.7. VII.7. EU added-value and upscaling possibilities 

Within F4W project, a lot of actions, being technical (WP3 and WP4) or non-technological (WP5), were 

carried out in the city of Great Torrington. Both the water utility South West Water and the citizens 

have directly benefited from the good results of these actions which constitutes an important EU-

added-value. 

For example, having installed around 100 smart meters in households of the city of Great Torrington 

(medium class, not metered a lot) after having informed and then convinced volunteer citizens notably 

by organising public meetings was the starting point for raising awareness of citizens about the value 

of water. Then, having enabled pipeline to retrieve consumption data from smart meters and provide 

extracted analytics to customers via a smartphone application to drive positive changes in water use 

behaviour, reduce consumption and reduce the customers water bill directly contributed to the 

sustainable development goals SDG 1 "end poverty" and SDG 6.b "Citizen participation in decision-

making". In addition, having explored, looking at the use of this data by the utility provider, South West 

Water, to detect customer leaks and manage the repair/replace work lifecycle using an interactive web 

application linked to the FIWARE system fully participated at the green-digital transition of Europe. 

 

In terms of replication and upscaling of the models and tools developed in this EU demo case during 

the F4W project, it can be envisaged. Hence, the work completed as part of this F4W demo case in 

development of a utility application and customer smart meter application will be directly re-useable 

by South West Water for other customers across their region.  South West Water has already 

committed to the installation of an additional 65,000 smart meters across their North Devon region by 

2025 since this project completed. 

The Utility application is built so that any new smart meter installations will be visible within the 

application and therefore the underlying approach of searching, filtering and prioritising based on 

leakage volumes will continue to be used. Similarly, the underlying code behind the customer smart 

meter application could be re-useable, with minimum effort, should South West Water or another 

utility continue with the development and deployment of the customer smart meter application. 
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VIII. Recommendations 

This section of the reports draws on the experiences of the development project to highlight 
recommendations for best/better practice for future projects 

VIII.1. Working with FIWARE  

FIWARE has been an incredibly useful technology for this project, providing a straightforward and 
generally easy-to-use environment for managing data, in particular time series data, without the need 
to resort to SQL/no SQL databases. However, the FIWARE paradigm can be difficult to follow. It is 
recommended that developers that are new to FIWARE should look to develop their familiarity with 
FIWARE through small learning activities prior to engaging on project-based activities. The Stellio 
‘beehive’ API walkthrough (https://stellio.readthedocs.io/en/latest/API_walkthrough.html) is a good 
starting point and the CIM NSGI-LD specifications 
(https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.05.01_60/gs_CIM009v010501p.pdf), 
though it is worth noting that not all context broker implementations follow the specification exactly. 
 

VIII.2. Data Collection and interpretation 

There was an initial assumption within the project that data collection would be completely reliable, 
though this was soon abandoned given gaps in data collection, typically caused by vehicles parking 
over ground-based meters blocking data transfer. For this project, it was not a huge issue as the key 
data, ‘total consumption’, would eventually be transmitted to the FIWARE broker and the nature of 
the data was such that missing consumption data could be ‘infilled’ along a straight-line estimate. 
However, the same could not be said for the continuous flow attributes which would limit the 
performance of leak detection.  
 
The resulting recommendation is that consideration needs to be given to the data being collected, the 
impact of data loss and the likelihood and approaches, if appropriate, for data reconstruction and 
interpolation.  
 

VIII.3. Development enviroments  

Much of the initial development in this project was geared around applications interacting with the 
FIWARE broker. Whilst this worked well for early development activities, it did become increasingly 
difficult to work in testing, particularly with edge case generation and detection as there was a strong 
desire to keep testing data away from the live data in the broker.  
 
It is recommended that developers working with FIWARE should look to implement a devops style 
environment, such that functionality can be developed, tested and operated in separate, but 
functionally and structurally environments. We found that moving to a containerised environment 
with Docker enabled a far more compartmentalised approach to development. It is also recommended 
for developers that are looking at containerised environments should look to develop their Docker 
expertise before moving onto a live development project and avoid using a current project as a learning 
environment. 

https://stellio.readthedocs.io/en/latest/API_walkthrough.html
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.05.01_60/gs_CIM009v010501p.pdf
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VIII.4. Data security  

This recommendation is closely related to section VIII.3, in that developing in a purely live environment 
raises clear issues about data security, in that if errors are made to the live FIWARE broker, the result 
could be the loss of live data. This creates a broad recommendation that consideration should be given 
to data security, to ensure that live data is not lost. 
In addition, a data policy should be developed to determine how data can be duplicated from a live 
server into test environments and how data can be backed up, achieved and recovered as necessary 
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