

D3.4 FIWARE-enabled applications for
customers

Author: Gareth Lewis (UNEXE)
Co-Authors: Danillo Lange (EUT)

May 2022

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under
Grant agreement No. 821036.

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 2 / 32

Disclaimer
This document reflects only the author's view. The European Commission is not responsible for any use
that may be made of the information it contains.

Intellectual Property Rights
© 2022, Fiware4Water consortium
All rights reserved.
This document contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both.
This document is the property of the Fiware4Water consortium members. No copying or distributing,
in any form or by any means, is allowed without the prior written agreement of the owner of the
property rights. In addition to such written permission, the source must be clearly referenced.

Project Consortium

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 3 / 32

Executive Summary

Deliverable 3.4 describes the role of data within demo case #4: Smart Meters and Customers (United
Kingdom) and specifically concerns data produced / stored in the Stellio broker, as captured from Diehl Altair
V4 15MM smart meters in the Great Torrington pilot and SWW customer data from various sources.

Section I of the report details the key values in the Diehl Altair V4 15MM smart meter dataset
(waterConsumption, minFlow and alarmFlowPersistence) and describes how minFlow and
alarmFlowPersistence are used to determine and measure customer-side leakage events.

Section II details the approach taken for dealing with missing waterConsumption readings, typically due to
over-the-air meter data capture failing due to parked vehicles on, or near to, the smart meter transponder,
where ‘missing’ readings are estimated and in-filled with actual data on a linear scale.

Section IV details the approaches taken to extract customer ‘cluster’ data, i.e. grouping customers together
by consumption, environmental and property data, using a range of data sources provided by SWW (Table
2).

Section V describes approaches to the visualisation of smart meter data through the Stellio context broker,
with both the utility and customer-side applications presented. The over-arching goal of data visualisation
was to provide the two different user groups (SWW staff and SWW customers) with different presentations
of the same data to both: 1) ensure data consistency between both user groups and 2) provide data
presentations that met the needs of both user groups.

Section VI details optimisation approaches that were undertaken in order to minimise the time taken to
process Stellio data and present it to users. This was particularly evident in functions that processed the
entire Stellio data set, e.g. collecting leak data for the utility app and collecting overall population
consumption for the customer app. Optimisations were centred around moving Stellio data onto a traditional
database and employing ‘traditional’ SQL operations and caching frequent daily requests.

Section VII records the conclusions and perspectives of the application development project and highlights
the need for a better understanding of the FIWARE/Stellio/Docker ecosystem when starting a project of this
nature, the generally positive suitability of Django and Flutter as a full-stack platform for mobile
development, and the pivotal role of IT support in a large organisation.

Section VIII records the recommendations for future work in this area.

Related Deliverables

D1.1 Requirements from Demo Cases

D4.5 FIWARE4_ Smart Metering and Citizen Engagement

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 4 / 32

Document Information

Programme H2020 – SC0511-2018

Project Acronym Fiware4Water

Project full name FIWARE for the Next Generation Internet Services for the WATER sector

Deliverable D3.4: FIWARE-enabled applications for customers

Work Package WP3: Smart Applications and Devices

Task Task 3.4

Lead Beneficiary University of Exeter

Author(s) Gareth Lewis (UNEXE)

Contributor(s) Danillo Lange (EUT)

Quality check Alex van der Helm (WATNL)

Planned Delivery Date 30/04/2022

Actual Delivery Date 24/05/2022

Dissemination Level Public (Information available in the Grant Agreement)

Revision history

Version Date Author(s)/Contributor(s) Notes

Draft 1 18/04/22 Gareth Lewis (UNEXE), Danillo Lange
(EUT)

First version of the document

Draft 2 22/04/22 Alex van der Helm (WATNL) Internal review of the document

Draft 3 20/05/22 Gareth Lewis (UNEXE), Danillo Lange
(EUT)

Final version of the document

Final 24/05/22 Gareth Lewis (UNEXE), Danillo Lange
(EUT)

Addition of an executive summary

V2 11/07/22 Gareth Lewis (UNEXE) Addition of recommendation section

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 5 / 32

Table of content

Executive Summary .. 3

Related Deliverables ... 3

Table of content ... 5

List of figures .. 7

List of tables ... 7

List of Acronyms/Glossary ... 8

Introduction ... 9

I. Data Integration ... 9

I.1. waterConsumption .. 9

I.2. minFlow ... 10

I.3. alarmFlowPersistence ... 10

II. Data processing ... 10

III. Implementation of Smart Data Models & Context Broker ... 11

IV. Water use clustering .. 11

IV.1. Data ... 12
Data preparation .. 13
Assemble of daily consumption time series joined data set.. 14
Assemble of the household characterization data set .. 14

IV.2. Models ... 15
Cluster Assessment (K-Means + DTW) ... 16
Dimensionality Reduction and latent space identification (Autoencoder) .. 17
Clustering Ensemble (K-Means + Euclidean) .. 17

IV.3. Evaluation .. 18
First model (K-Means + DTW) .. 18
Second model (Autoencoder) .. 19
Third model (K-Means + Euclidean distance) .. 20

V. Data Visualisation .. 22

V.1. Utility Side Data Visualization ... 22

V.2. Customer Side Data Visualization.. 23

VI. Platform Optimization ... 24

VI.1. Data processing ... 24

VI.2. Data visualisation: Utility-side App.. 24

VI.3. Data visualisation: Customer-side App.. 25

VII. Conclusion and Perspectives .. 27

VII.1. FIWARE / Stellio ... 27

VII.2. Development environment ... 27

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 6 / 32

VII.3. Limited understanding of FIWARE/docker .. 27

VII.4. Django (app server development) ... 28

VII.5. Flutter (mobile app development) .. 28

VII.6. IT policies ... 30

VII.7. VII.7. EU added-value and upscaling possibilities ... 30

VIII. Recommendations ... 31

VIII.1. Working with FIWARE ... 31

VIII.2. Data Collection and interpretation.. 31

VIII.3. Development enviroments .. 31

VIII.4. Data security .. 32

References .. 32

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 7 / 32

List of figures

Figure 1: Conceptual architecture ... 9
Figure 2: Water consumption infill in operation ... 11
Figure 3 Time-series grouped by properties ... 14
Figure 4 Financial category sub-segment types .. 15
Figure 5 Solutions flowchart .. 16
Figure 6 Autoencoder loss curve ... 19
Figure 7 (a) Elbow and (b) Silhouette evaluation for the different clusters.. 20
Figure 8 Sankey Diagram, continuity of clusters between models (considering summer models) 21
Figure 9 Aggregated features of the different output clusters for each season 21
Figure 10 Cluster distribution for each season.. 22
Figure 11: Utility app leak reporting.. 23
Figure 12: Customer App showing daily consumption (left), historic consumption (centre) and
consumption graph (right) .. 24

List of tables

Table 1 Water consumption dataset description .. 12
Table 2 Sensor reading grouped information ... 12
Table 3 Demographic and financial features ... 13
Table 4 Data model for the first clustering algorithm ... 14
Table 5 Aggregated consumption values .. 15
Table 6 Autoencoder datamodel ... 18
Table 7 Evaluation of the first model .. 18
Table 8: Autoencoder’s Trainable parameters table ... 19
Table 9 Autoencoder epoch evaluation .. 19
Table 10 Evaluation of the final model.. 20
Table 11: Utility-side app responsive presentation, near portrait (left) and landscape (right) 25
Table 12: Flutter responsive apps, android and iOS(top and right), browser flexing content (bottom)
 ... 26
Table 13: Flutter layout differences, iOS (left) and Android (right) .. 29

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 8 / 32

List of Acronyms/Glossary

Text: Calibri, 11 (alphabetic order). Acronyms in bold. Full name, normal. Definitions (if needed) in italics.

F4W Fiware4Water project
NGI Next Generation Internet

 The Next Generation Internet (NGI) initiative, launched by the European Commission in the
autumn of 2016, aims to shape the future internet as an interoperable platform ecosystem that
embodies the values that Europe holds dear: openness, inclusivity, transparency, privacy,
cooperation, and protection of data.

OTA Over the air, wireless transmission of data
WPL Work Packages Leaders

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 9 / 32

Introduction

The goal of the SouthWest Water demo case was to implement a FIWARE enabled pipeline to retrieve
consumption data from smart meters and provide this data to customers via a smartphone application
to drive positive changes in water use behaviour, reduce consumption, and reduce customer water
bills. The data will also be used operationally to detect customer leaks.

Figure 1 presents the conceptual model of the proposed smart metering solution. Customer

consumption data is collected from Sigfox smart meters daily and stored in a FIWARE-Stellio context

broker. Customers can access their data through a mobile phone app. Value-add data is available to

customers through the interrogation of existing customer data, both the customer’s data and the pilot

case data, as a whole or subsets thereof, and potentially augmented with data from other sources.

Figure 1: Conceptual architecture

The demo case has been implemented as a collection of Docker containers, with one container
(provided by EGM) implementing the Stellio context broker and the other implementing the customer-
side and utility-side applications. Both applications are implemented using Django, with the customer-
side app providing functionality primarily through a mobile app implemented in Flutter. The Flutter
app is also available as a development-side web application, though this is not intended for customer
use. The utility-side app is realised as a web app.

I. Data Integration

For this pilot, a water consumption smart model was developed as a digital proxy of the physical smart
meters used in the pilot, Diehl Altair V4 15MM. Data was collected from the physical smart
metersdaily, with key attributes of the water consumption model being waterConsumption, minFlow
and alarmFlowPersistence.

I.1. waterConsumption

This attribute records total water consumption since the meter has been installed and can be
considered functionality equivalent to traditional ‘elapsed’ meters. Periodic consumption can be

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 10 / 32

determined by subtracting daily consumption figures. However, data is not collected with 100%
reliability due to OTA (over the air) data transmission failures, typically from parked vehicles blocking
data transmission, and other operational issues, so care must be taken when determining daily
consumption figures.

I.2. minFlow

This attribute records the minimum flow level observed by the meter during a 24hr period. Ideally, this
should be zero as non-zero values are indicative of continuous flow, ‘leak’. This value is used with
alarmFlowPersistence to determine the severity of leak.

I.3. alarmFlowPersistence

This attribute translates the minFlow attribute into a qualitative term and is used for determining the
severity of a continuous flow / leak situation. The Sigfox meter generates the following terms: 'Nothing
to report', 'no persistence', 'In progress impacting persistence', 'In progress persistence' and 'Past
Persistence during the period'].

In the application, 'In progress impacting persistence' and 'In progress persistence' are used to define
a leak for the daily reporting period.

II. Data processing

Smart meter data is collected on a rolling daily basis (with several meters being processed every hour,
rather than processing all meters at a given point in the day) and stored in Stellio using the
WaterConsumption entity.

Although the OTA daily data collection was generally reliable (with data being collected far more often
than not), there were periods where data was not collected, with two broad use cases of collection
failure; 1) data was not collected due to an OTA transmission failure, which presented as isolated days
of no data collection for a given meter or 2) data was not collected due to IOT Agent failure, which
presented as multi-day data collection failures across all of the meters.

Whilst this was not a huge issue for the system, as consumption is measured as total since meter
installation, rather than absolute daily consumption, it did make visualization and data processing over
given periods awkward due to the potential for arbitrary gaps in data.

To address this, functionality was developed to automate the production of ‘infill’ data that would
create estimated consumption values between known start and end points, Figure 2. This approach
was particularly useful to visualize historic consumption data for the customer app.

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 11 / 32

Figure 2: Water consumption infill in operation

Infill was only undertaken for water consumption as its role was primarily to visualize rather than
logical/analytical. Figure 2 illustrated the two failure modes for data collection, with the individual
orange estimates shows isolated data collection failure occurrences and the large band from 2020-7
to 2020-11 showing where longer term data collection failure had occurred, due to IoTAgent failure.

III. Implementation of Smart Data Models & Context Broker

The pilot maintains two smart data models: water consumption and consumer info. The water
consumption model captures all the relevant data from the smart meters, in particular
waterConsumption, minFlow and alarmFlowPersistence.

The consumer information model is a self-reporting model that is used for user clustering. It comprises
of two parts: customer information, and customer settings. Given the experimental nature of
clustering, the information component stores a set of cluster properties and value choices that users
may select, whilst the settings component stores the current selection of those properties. This
approach allows cluster properties to be changed on demand and provides a data-driven scaffold to
allow users to set novel properties in the customer-side app without needing to update the app
codebase.

The context broker was provided by EGM and realised as a Stellio broker.

IV. Water use clustering

The presented work aims at providing the water supply organization with an insight into identified
behaviour across urban households, by analysing historical values of consumption and other factors
such as economic, social, and weather parameters. An Artificial Intelligence (AI) data-driven ensemble
approach is proposed, which combines multiple clustering algorithms with time-series data analytics
and advanced dimensionality reduction techniques. As a result, a predictive model is obtained which
provides a real-time classification, among different behaviour groups, based on any given customer’s
short-mid and long-term historical and static information.

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 12 / 32

IV.1. Data

The provided datasets were composed of multiple files, they are available in .csv format and are stored
off-line, as can be seen in Table 1:

Table 1 Water consumption dataset description

Title Description Method of
acquisition

Sampled Properties.csv A table of sampled properties,
sample types and metadata.

Received
by email

Sampled Property Occupancy.csv A table of occupancy records for
each sampled property.

Rainfall Stations 4200m Grid.csv A table of 674 rainfall stations for
which data has been retrieved
since January/2019.

Temetra Consumption Data.sqlite Consumption data from customers
in the Temetra sample.

AMRConsumptionData.sqlite Consumption data from customers
in the AMR sample.

PITConsumptionData.sqlite Consumption data from customers
in the PIT sample aggregated to 15
minute time period.

WaterUse_SampledCustomers_DataSummary.csv Dataset containing financial, social
and demographic properties of
households.

PIT__Data_15min_2018_2021_NoOverlaps.sqlite Consumption from PIT sample with
gaps filled.

The data set used to demonstrate our developments, shown in Table 2, composes of high-resolution
time-series water consumption data collected from 3 different types of smart sensors scattered across
the area, with dates in the range from 2016 to 2021 at an interval between 15-minutes and a day.

Table 2 Sensor reading grouped information

Feature Number of
samples

Description Unit No. of
registers

Sensor type 1
regadings

562 Water consumption registered
from the sensor with the
highest definition, in a 15-
minute interval.

Litres/15
minutes

42,414,797

Sensor type 2
readings

2111 Water consumption registered
from sensor 2 in a 30-minute
interval.

Litres/day 5,630,035

Sensor type 3
readings

335 Daily water consumption in
litres registered from sensor 3.

Litres/30
minutes

820,313

Rain information - Rain historic information and
location of rainfall stations

mm, string 2,047,668

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 13 / 32

Moreover, it also includes a rainfall dataset containing the height in millimetres with irregular intervals.
Lastly, the data set containing demographic characteristics and financial level segmentation of said
households that are presented in Table 3. Moreover, all presented features were linked to the
households and were supplied along with the consumption data sets.

Table 3 Demographic and financial features

Feature Description Unit N. of registers

Financial category Powerful individual level and financial
services segmentation, built based on
IPSOS’s Financial Research Survey.

Categorical 4,918

Net worth
category

Individual classification of consumers
based on their net worth, combines
income, family composition and
financial assets.

Categorical 4,918

Demographic
category

Demographic and neighbourhood
characteristics

Categorical 4,592

Garden Size The floor size of the property’s
garden. Units are in m².

m² 5,090

Building Size The floor size of the property’s
building. Units are in m².

m²

5,090

Household Size Estimated number of persons that
resides on the property.

Integer 5,111

Children at home Estimated number of children residing
on the property.

Integer 5,111

Data preparation

While working with time-series data, some pre-processing steps are necessary because either error
during data collection may occur or some specific behaviour registered in the data can negatively affect
the development of ML models.

The tasks performed in the earlier steps of the data analysis were the analysis of outliers and
consecutive zeroes in the historic water demand data. It was decided to compare every value of the
historic data set against a defined threshold at a local (property) scope to deal with outliers. The values
that meet this criterion, as seen in equation (1), are then replaced by its local median value; this
process was also applied to household characteristics data fields as well.

 𝑉𝑎𝑙𝑢𝑒 > (𝑋 + 3 × 𝜎) (1)

where 𝑋 = mean value and 𝜎 = standard deviation, both calculated locally

From data analysis, it was found that 30 or fewer days with consecutive zeroes in readings can be
considered vacations, so it was decided to delete from the time series any period with more zeroes
than that.

Moreover, missing and negative values were treated as well. In this case, such values were replaced
by the average value of the corresponding data field.

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 14 / 32

Assemble of daily consumption time series joined data set
The strategy at this point was to employ Dynamic Time Warping (DTW) as a distance-metric into the
K-Means algorithm. DTW can be defined as an algorithm used for measuring similarity between two
temporal sequences (time-series), which may vary in shape and length. As described by [1] it is possible
to efficiently employ DTW into a K-Means to cluster time series of different shapes and lengths,
enabling a dynamic and more flexible comparison.

The choice of combining the time series of each household (including all different smart sensors)
resulted in a training dataset where each register corresponded to a consumption time series of a given
household. The frequency of the readings was resampled to be at a daily level, to make use of all
sensors and achieve records with a reasonable number of registers. Table 4 shows the data model of
the joined data set at this point, and later, it will be adapted to the accepted shape of the clustering
algorithm.

Table 4 Data model for the first clustering algorithm

Data field Description Unit

Readings Water consumption value, joined between all
sensor and resampled to a daily value.

Litres/day

Date Date and time of registered event Datetime

Reference The household identification String

Season Which season the register belongs to String

Before applying the clustering, the Reference and Season data fields will be used to identify different
time-series and use them on its respective model. In Figure 3

Figure 3 Time-series grouped by properties

Assemble of the household characterization data set
The purpose of the household characterization data set of length (n) of 2715, being each register a
reference for a household, is to represent all quantitative and qualitative static (non-time-series) data
that is available for each household.

Almost all available data fields were considered resulting in a high-dimensional data set, including for
each register (household): a) Average consumption of weekdays and weekend, and weekly values for
each season; b) Properties characteristics such as building and garden size; c) Rainfall data; d)
Occupancy, social and financial categories (which were converted from categorical variables into
binary fields); the data set achieved in the end had around 147 different features. Some of the latter
data fields that was previously described can be observed in Figure 4:

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 15 / 32

Figure 4 Financial category sub-segment types

Furthermore, this data set is composed of both numeric features and categorical data fields, as can be
observed in Table 5 that follows, the categorical features were later converted to indicator variables.

Table 5 Aggregated consumption values

Data field Description Unit

Seasonal weekday
average

Water consumption average value on
weekdays (for each season).

Litres/day

Seasonal weekend
average

Water consumption average value on
weekend days (for each season).

Litres/weekend

Seasonal weekly
average

Weekly water consumption average value
(for each season).

Litres/week

Daily rainfall average Daily average rainfall calculated for each
household, based on the closest rainfall
station.

mm/day

Max value Maximum consumption value. Litres

Mean value Mean consumption value. Litres

Percentiles (25, 75) Percentile values of consumption (25%
and 75%)

Litres

Property characteristics Characteristics include garden and
building size, household size, number of
children at home, etc.

m², integer

Socio-economic
categories

General demographic and neighbourhood
characteristics (6 categories and 49 sub-
categories).

Categorical

Financial categories Individual power’s value, based on a
research survey (10 categories and 50
sub-categories).

Categorical

IV.2. Models

The solution is composed of three modules. The first module covers a household consumption
clustering based on time-series data similarity using the Dynamic Time Warping (DTW) distance metric,
allowing time-series of different lengths and shapes to be compared [2]. In parallel, the second module

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 16 / 32

processes the static sampled household characteristics and meteorological features aiming to reduce
its dimensionality via its latent representation identification. This step is conducted using a Deep
Neural Network (DNN) implementation of a type of feedforwarded neural networks called
Autoencoder. In this case, it is specifically denominated a DNN because this Autoencoder have more
than three layers when considering the encoder and decoder.

Finally, the outputs of modules one and two are combined and clustered to generate groups that are
representative of the high-resolution input data set and that are suitable for understanding the
household’s consumption behaviour.

The solution’s architecture is represented in a flowchart format, where each section or model is
composed of the input data model and the respective algorithm, as can be seen in Figure 5.

Figure 5 Solutions flowchart

Cluster Assessment (K-Means + DTW)
Different seasons can influence water consumption behaviour, because of that, daily consumption
time-series data is segmented into seasons, and individual ML models were generated for each period
[3]. The split of seasons was executed following United Kingdoms’ season definition as follows: a)
Spring was the months of March, April, and May; b) Summer, June, July, and August; c) Autumn,
September, October, and November; and lastly, d) Winter was composed of December, January, and
February.

Additionally, the time series data were also separated by year. We have decided to work exclusively
with the years 2017 and 2018, mostly because 2019 had some gaps on it during the crucial season of
summer, and 2020 was thought to be not a representative year due to the behaviour change that the
sanitary crisis brought [4].

K-Means is an unsupervised learning algorithm widely used for data clustering. K-Means works by
randomly assigning k cluster points in the hypervolume of the data set, then it assigns each data
register to the closest cluster centre and finally recomputes the cluster centres based on current
memberships, this process is repeated until it converges on the defined criterion.
To find the ideal number of clusters, the following scoring metrics were used:

 Elbow method (EM): Heuristic used in determining the number of clusters, consists of plotting
the explained variation (also known as the Sum of Squares of the distance between data

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 17 / 32

points, SSE) against the number of clusters, where it is visible that after the inflexion curve
(resembling an elbow) the model fits better.

 Silhouette Coefficient (SC): Compares how similar a sample is within its cluster when in
comparison with other clusters, take values between -1 and 1, with values closer to 1 meaning
well-separated clusters.

Additionally, this K-Means model was trained using random initialization of centroids.

Dimensionality Reduction and latent space identification
(Autoencoder)
It is proposed the use of an AutoEncoder (AE), a specific DNN architecture, for the dimensionality
reduction task [5]. An AE is widely used for noise reduction and image compression. It is composed of
three main segments which are the encoder, responsible for shrinking the original data into
compressed data into a second segment known as the bottleneck, and a third one called the decoder,
which does the reverse work of the encoder, transforming the low-dimensional data into the original
shape. After this process, the output is then compared to the input to see if the DNN managed to
reconstruct the data based on its compressed state reasonably well. In this schema, the bottleneck
layer is trained to identify the latent space of the input information and can be used for dimensionality
reduction purposes with non-linear capabilities.

The strategy is to extract the low-dimensional data from the bottleneck, the latent space, to use as an
encoded feature that represents every property. Moreover, this extraction was only made after that
the AE evaluation (based on the reconstruction of data) was acceptable.

The layers defined for our DNN were the following: a) Encoder, composed of Linear and ReLU layers
with the input of 147 features and output of 3 features; b) Bottleneck data; c) Decoder set of layers
including Linear and ReLU with the input of 3 features and output of 147 features. This structure is
normally adopted for dimensionality reduction. Usually, the bottleneck layer is of a smaller size for
ensuring that the dimensionality will be reduced after the encoder layer. Aside from the structure,
some hyperparameters were optimized for this NN:

 Optimizer: Adam, is an extension of stochastic gradient descent that is broadly used for deep
learning applications.

 Learning Rate: 1e-2, parameter tuned to achieve an acceptable performance after 1000
epochs, values considered on hyperparameters optimization: 1e-2, 1e-3 and 0,1.

 Weight decay: 1e-5, a parameter used to penalize complexity, being a way to contour
problems of underfitting or overfit in NN. Values considered on optimization: 1e-5, 1e-4, and
1e-3.

 Criterion (Evaluation): MSE Loss, measures the loss as Mean Squared Error between each
element in input x and target y.

Clustering Ensemble (K-Means + Euclidean)
Ensemble techniques applied to supervised and unsupervised learning algorithms can result in a better
performance overall [6]. More specifically, combining algorithm outputs for the execution of a K-
Means can provide clusters with a higher similarity and quality.

Joining the data is an important step of the study, and that is accomplished by converting the cluster
labels from the first model (FM) to indicator variables (binary) and appending the encoded features

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 18 / 32

extracted from the latent space of the AE. The joining is made at a household level, meaning that each
register that represents a property, have both outputs combined and used as training data for the next
K-Means model. The respective data model can be observed in Table 6.

Table 6 Autoencoder datamodel

Data field Description Unit

Encoded feature 1 First AE encoded feature. Float

Encoded feature 2 Second AE encoded feature. Float

Encoded feature 3 Third AE encoded feature. Float

Label 2017 Cluster label that was assigned to the
2017 model (K-Means + DTW)

Integer

Label 2018 Cluster label that was assigned to the
2018 model (K-Means + DTW)

Integer

The two latter variables were converted into binary indicator variables, so, finally, the data set would
be composed of 18 features. Once again, one data set per season was made to train the individual
models (one for each season).

Like the FM, this K-Means implementation adopted the random initialization of centroids and selection
of value k made by analysing the EM, SC, and Calinski Harabasz (CH) metrics. Moreover, this model
uses the Euclidean method as a distance metric which is widely adopted by default in the industry.

Another different step in this model was the necessity of scaling the data set beforehand due to the
different nature and numeric scale of joined outputs which composes the training data set.

IV.3. Evaluation

First model (K-Means + DTW)
As defined earlier, four different K-Means models have been generated, each one with its own data
set (separated by season). The choice of the value k came based on the analysis of the values of the
EM (SSE) and the SC. The value can be observed in Table 7.

Table 7 Evaluation of the first model

Season SSE for
k = 6

SSE for k
= 7

SSE for k
= 8

SC for k = 6 SC for k = 7 SC for k = 8

Spring 1.3342 1.2845 1.2760 0.0535 0.0650 0.0476

Summer 1.3383 1.2841 1.2868 0.0573 0.0536 0.0456

Autumn 1.3534 1.2821 1.2797 0.0567 0.0587 0.0609

Winter 1.3228 1.3233 1.2874 0.0505 0.0458 0.0471

The values marked in bold were the choices for the number k of clusters. Internal discussions were
held with the water utility in which was decided to keep a low number of k clusters, with the objective
of making the analysis easier and simpler to understand. So, based on it and the metrics obtained
(higher value for SC and lower value of SSE), the chosen k value for each model was: 8.

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 19 / 32

Second model (Autoencoder)
The data that resides in the bottleneck is the one that will be used as a low-dimension version of the
data, given that the decoder made a good job reconstructing it. The Autoencoder also allows for use
of non-linear data. On Table 8 it is possible to see the number of trainable parameters for each layer
of the DNN, the values marked in bold represents, respectively: dimensions of input, bottleneck layer
dimension and the decode output dimension (same as original data).

Table 8: Autoencoder’s Trainable parameters table

Module Trainable parameters

Input 148

encoder.0.weight 9472

encoder.0.bias 64

encoder.2.weight 768

encoder.2.bias 12

encoder.4.weight 36

encoder.4.bias 3

decoder.0.weight 36

decoder.0.bias 12

decoder.2.weight 768

decoder.2.bias 64

decoder.4.weight 9472

decoder.4.bias (output) 148

The AE was evaluated by measuring the loss metric obtained by comparing the reconstruction made
by the decoder and the input data, through all the epochs of training, as defined earlier. Moreover, an
additional measuring during the validation phase was implemented. Those values can be observed in
Table 9 and in Figure 6. Additionally, 70% of the data set was used to train the model, while the other
30% was used to validate it.

Table 9 Autoencoder epoch evaluation

Epoch Train loss
(MSE)

Validation
loss (MSE)

1 0.9893 0.4063

200 0.4872 0.3547

600 0.4071 0.3285

1000 0.3889 0.3131

Figure 6 Autoencoder loss curve

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 20 / 32

Third model (K-Means + Euclidean distance)
To evaluate the ensemble model, three different metrics are employed. The previously discussed EM
and SC, but also the Calinski Harabasz index (CH), which is a metric best suited for Euclidean distance-
based clustering.

 Calinski Harabasz Index (CH): Also known as Variance Ratio Criterion (VRC), it represents the

ratio between the within-cluster dispersion and the between-cluster dispersion, higher

values mean well-separated clusters.

As can be observed in Figure 7, the SC values for each model differ, but, overall, they represent well-

defined clusters while maintaining a reasonable low value for k. Moreover, the same figure also

shows the EM values for the ensemble model.

Figure 7 (a) Elbow and (b) Silhouette evaluation for the different clusters

Given those analysed metrics and discussions related to the number of clusters, the optimal number

of k chosen for the third model (TM) was, respectively: 8, 7, 8 and 8.

Next, in Table 10, a summary of the evaluation metrics for each ensemble model is represented, based

on that, it is possible to conclude that the spring and autumn models achieved the highest metrics and

the summer model, had the worst performance overall.

Table 10 Evaluation of the final model

Season No. of clusters SSE SC CH

Spring 8 9855.568 0.28443 112.6678

Summer 7 11484.491 0.25049 106.3353

Autumn 8 9871.417 0.28479 111.5321

Winter 8 10120.917 0.28838 109.7568

On the other hand, one chosen form of validation to compare the first clustering result (K-Means +

DTW) with the ensemble model, and to identify and observe the impact that the encoded features

finally had on the final set of clusters, is the Sankey Diagram (SD). The SD is useful to observe

continuity between distinct sources, and it is represented in Figure 8, where FM means First Model

and TM means Third Model.

The TM cluster 2 is a brand-new cluster, being composed of many properties that before were assigned
to another cluster, but, in general, we can affirm that the remaining clusters were assigned close to
the result of the FM. Moreover, we can conclude from the SD that the encoded features had an impact
on the new assignation of clusters, but without changing most of the clusters defined by the FM.

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 21 / 32

It is important to note that, this proposed solution can be easily expanded by adding more years of
data, which can result in a better clustering result.

Figure 8 Sankey Diagram, continuity of clusters between models (considering summer models)

To expand the analysis, Figure 9 was developed by calculating the mean value of some properties per
cluster, to produce some comparative base between the different assigned clusters.

Figure 9 Aggregated features of the different output clusters for each season

The values were calculated by taking the mean value of a given feature considering all properties that
resides within the respective cluster.

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 22 / 32

Lastly, a plot showing the distribution of kind kernel density estimation (KDE), which is a non-
parametric way to estimate the probability density function of a given variable, in our case of the water
consumption variable in each cluster. On the x-axis we can observe the different models for each year
and on the y-axis each cluster, and can be observed in Figure 10.

Figure 10 Cluster distribution for each season

Through the normal distribution of this variable, it is possible to observe which clusters concentrate
the properties with the highest consumption in each model/year and can serve as a base for
comparation when considering only the water consumption feature.

V. Data Visualisation

A key goal of data visualisation and presentation in the demo case was to share data between utility

and customer side apps such that customers would not be surprised by data plurality, i.e. SWW staff

reporting different values to those that customers saw on the customer app.

To achieve this goal, Stellio was the data authority for both utility and customer-side applications.

V.1. Utility Side Data Visualization

Key goal of the utility app was to provide utility staff with a way of determining which consumers were

likely to have leaks in their properties. Although the alarmFlowPersistence meter property can give

some indication into potential leaks, utility staff developed an approach that also incorporated the

consideration of multiple properties:

1. Number of leak alarms (alarmFlowPersistence) over a given period

2. Consumption over a period compared with previous period

3. Weekly consumption over a given value

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 23 / 32

These considerations were wrapped into queries for Stellio with the results presented in numerical

and graphical formats, Figure 11.

Figure 11: Utility app leak reporting

V.2. Customer Side Data Visualization

The key goals of this app were: 1) give customers an insight into their daily and historic consumption

and 2) give customers an insight into how their consumption measures within the overall consumer

group of Gt. Torrington, with consumption data presented numerically, and graphically.

Figure 12 details screenshots of the customer app. The image on the left shows the daily consumption,

with the customer’s consumption for the previous day (50 litres on 15/11/2021) and a summary of

consumption for the entire pilots, detailing the total consumption for that day, the average

consumption per customer and where the customer’s consumption ranks within the Great Torrington

group (2nd highest out of the ten). In addition, the daily usage records the lowest (above zero)

consumption for the group and the highest, to give customers a clear idea of where they sit within the

group.

The centre image shows historic consumption (set over the last 31 days) and provides the customer

with a similar breakdown of consumption in the group, but over a longer timeframe.

The image on the right shows a graph of consumption over the same period.

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 24 / 32

Figure 12: Customer App showing daily consumption (left), historic consumption (centre) and consumption graph (right)

VI. Platform Optimization

VI.1. Data processing

Initial development work with Stellio was centred on a ‘single customer’ approach, with requests for a
customer’s current or historic consumption, using the ngsi-ld/v1/entities and ngsi-
ld/v1/temporal.entities requests.

However, iterating through customers to collect all current or historic data resulted in long periods of
data collect as http requests were queued up. This was largely addressed by threading http requests,
though this provided to be largely insufficient when multiple requests were required, particularly for
building the customer app ‘consumption narrative’ where a customer’s consumption was ranked
against group consumption.

One approach to address this in the future, in particularly with the open-ended queries of the utility-
side app was moving Stellio data into a PostgreSQL database and using SQL to query data. Although
Stellio and ngsi-ld/v1 do provide some support to query the underlying context broker, missing
consumption data makes this a non-trivial exercise and running a daily PostgreSQL building process
allows data to be suitably processed.

It is assumed that there is a more efficient data management approach in extending the Stellio dataset
to store daily consumption in an entity that is separate to the WaterConsumption model, though our
limited understanding of Stellio and a desire to avoid updating the live Stellio broker left this approach
untried.

VI.2. Data visualisation: Utility-side App

The utility-side application was designed and implemented to be run in a standard desktop landscape
mode browser within the South West Water infrastructure and has been implemented as a fairly

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 25 / 32

responsive application, insofar page content will adjust to reflect differences in screen size and aspect
ratio to a large degree, Table 11: Utility-side app responsive presentation, near portrait (left) and
landscape (right), and where this is not possible, the browser will make the screen scrollable.

Table 11: Utility-side app responsive presentation, near portrait (left) and landscape (right)

VI.3. Data visualisation: Customer-side App

The customer-side app was designed (D4.5, V.4) as a portrait app for smart phones and implemented
in Google’s Flutter API which supports responsive UI presentation to a large degree. The app has been
configured to present only in portrait mode and is unresponsive to changes in orientation, i.e. the UI
will remain in portrait mode if the phone is rotated to landscape mode. The app does not support
tablet presentation modes (4:3 / 3:4).

Much of the Flutter UI was developed using the flexible(flex) class which allows UI screens to be
subdivided in logical, rather than physical, estate (like Bootstrap’s grid system). This allows Flutter to
resize screens around ‘similar’ aspect ratios, e.g. broad portrait of 9:16 to 9:19.5, without losing
content off the edges of the screen. Table 12 shows how content is scaled across portrait devices of
differing resolutions and aspect ratios

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 26 / 32

Table 12: Flutter responsive apps, android and iOS(top and right), browser flexing content (bottom)

A ‘development testbed’ version of the Flutter app was created as a testing web page for the customer-
side Django app. As a landscape mode application, the portrait mode Flutter app was effectively
stretched to fit the real estate available (as part of the flexible approach), Table 12. This could be
addressed if the app was to be provided as a web page

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 27 / 32

VII. Conclusion and Perspectives

VII.1. FIWARE / Stellio

In general, Stellio worked well for the project and FIWARE appears to be a very useful framework for

hosting smart metering data. In particular, storing entities as JSON data completely removed the need

to create explicit database tables and the temporal evolution (ngsi-ld/v1/temporal/entities) removed

much of the need to do complex data management.

There were little to no issues with working with the Stellio context that EGM set up, though there

appeared to be occasional issues with the Sigfox / IOT Agent connection where data updates were

‘lost’ for several periods in the project.

The main operational issue with Stellio stem from requirements to perform multiple temporal requests

across the entire smart meter dataset in order to determine total consumption or total leak counts.

Attempting to perform these requests in a ‘for each smart meter ‘approach took a significant amount

of time, >1min for 100 smart meters, as requests were all queued on completion. Whilst this was

reduced by threading calls to the broker, it suggests either a poor choice of algorithm or a weak point

for the broker, it is suspected that it’s more an algorithmic issue that attempts to use the broker in a

way it is not designed.

VII.2. Development environment

For this project, the Stellio broker environment was treated as a ‘live’ service and care was taken to

not ‘break’ the service, with much of the app development being undertaken either using the live

Stellio service as a data source or working in custom development environments.

Using the live service as a data source worked for much of the development process, except where

there were needs to create edge case data in order to generate leak alarms, excessive consumption

and so on. For these situations, a separate Stellio broker was created and populated with synthetic

data. This was achieved by creating local Docker applications running the Stellio docker-compose

settings.

The resource requirements of Stellio did make it difficult to run remote Stellio instances, with Stellio’s

failures being difficult to interpret.

VII.3. Limited understanding of FIWARE/docker

Many of the development issues encountered in this project stem from limited understandings of

FIWARE and containerisation and it would have been extremely helpful to have had more orientation

at the beginning of the project in both areas.

Although having Stellio and Sigfox setup at the beginning of the project was a great timesaving, it did

create a mindset of a ‘live’ environment that should not be developed on, for fear of breaking it and

losing live data. This led to development approaches that were not optimal, in particular, in how the

demo case deals with processing Stellio data.

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 28 / 32

In hindsight, it would have been preferable to perform infill and leak processing as notification when

Stellio received new meter data for each meter, rather than taking the approaches that have currently

been implemented. However, to use notifications, URLs would need to be provided for the broker

which couldn’t have been done easily in a development environment, and it would have meant writing

entities to the live service.

The project would have benefited from developing tools to archive and rebuild broker contents in

order to have data security, which would have made it far less of an issue to add to and extend Stellio

entities as well as setting up development and test environments. It also would have been extremely

helpful to have been able to capture and duplicate Sigfox data.

The broad solution to these issues would have been to create a more typical dev-test-live environment

where functionality could be developed in the development environment, then moved to a test

environment, and finally published to the live environment. Docker can be an enabling technology for

this approach to devops and it was a technology we came too late in the project.

VII.4. Django (app server development)

Alongside Stellio, the project used Django as a server framework for both the utility and customer-side

applications and was selected as South West Water’s preferred web development framework. In

general, Django worked very well for the task and provided a lot of functionality to aid development.

As an established and industry-standard framework, there is a lot of support for Django on the internet

and most of the ‘novel’ problems that we encountered had already been encountered before with a

multitude of solutions and work arounds available, particular in areas such as integration with Flutter

and mobile http requests.

The project used independent Django servers for both apps (utility and customer) as a broad security

measure to ensure that the customer request framework could not be used to access utility only data.

Both servers used a shared python package that initially provided an interface to Stellio, so that apps

could not directly communicate with the Stellio broker. This was revised towards the end of the project

with the implementation of an intermediary postgres server that stored daily customer data to enable

the utility broker to make more complex leak / usage queries.

VII.5. Flutter (mobile app development)

Flutter was used to develop the mobile app and was selected, in part, for its ability to create reactive,

cross-platform (android, iOS and web) UI.

In general, Flutter worked well and has a lot of support (mainly from Google) but does give the

impression that it superseded by react.native.

Flutter’s USP is that it is a responsive and cross-platform framework and whilst the amount of platform-

specific code is fairly small, there are still platform-specific requirements, particularly with how both

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 29 / 32

platforms (iOS and Android) deal with app layout. This can be seen in Table 13, where the iOS

application to the left has 4 ‘action’ icons at the bottom of the screen, whilst the Android application

to the right has the same functionality in the hamburger menu to the top left of the application.

Table 13: Flutter layout differences, iOS (left) and Android (right)

Flutter’s responsive presentation engine works well with content generally being resized and organised

correctly for different resolution and aspect ratio mobile screens, though this can lead to large

amounts of white space and UI designed for portrait mode screens tends not to automagically resize

for landscape mode, but this is to be expected. The cost of Flutter’s responsive presentation is that UI

components are developed in mark-up code which tends to be time-consuming to create and iterate

and it would make more sense to use a visual editor to layout UI in a more aesthetic manner.

Flutter uses Dart as its underlying programming language which is transpiled into JavaScript. In general,

Dart is a fairly clunky language which concentrates on the wrong things (code layout) and obfuscates

straightforward JavaScript concepts (promises) into ‘Future’, which results in awkward http.request

processing workflows.

Flutter also highlights development issues with iOS and Android development. Whilst AndroidStudio

allows debug apps on both mobile platforms to be debugged directly, the apps only exist during

debugging sessions and the applications must be built onto the phones to be used outside of

AndroidStudio. For Android, this is a very simple process, the build option is selected and an apk file is

generated. This can then be installed on any android device. For iOS, the build option results in the

creation of an xCode project which must then be loaded into xCode on a mac and the project built. To

install the app onto iOS developers, they must be either setup for development or available through

TestFlight. Generally, this makes developing for iOS a time-consuming activity. Android should be

considered as the primary development platform, just purely to speed of iteration.

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 30 / 32

VII.6. IT policies

For this kind of development (context brokers, servers, and mobile apps) it’s apparent that

development needs to be geared around the availability of internet enabled, and secure, servers that

developers have access to. For much of the project, development was only really possible on local

development machines and low-performance servers that were incapable of hosting Stellio.

Development experiences with Heroku showed that whilst it’s possible to host services on remote

infrastructure-as-a-service services, costs ramp quickly and the services tend not to provide quite what

is really needed for development. Some development experiments were undertaken with Azure, but

nothing enough to provide any concrete conclusions.

VII.7. VII.7. EU added-value and upscaling possibilities

Within F4W project, a lot of actions, being technical (WP3 and WP4) or non-technological (WP5), were

carried out in the city of Great Torrington. Both the water utility South West Water and the citizens

have directly benefited from the good results of these actions which constitutes an important EU-

added-value.

For example, having installed around 100 smart meters in households of the city of Great Torrington

(medium class, not metered a lot) after having informed and then convinced volunteer citizens notably

by organising public meetings was the starting point for raising awareness of citizens about the value

of water. Then, having enabled pipeline to retrieve consumption data from smart meters and provide

extracted analytics to customers via a smartphone application to drive positive changes in water use

behaviour, reduce consumption and reduce the customers water bill directly contributed to the

sustainable development goals SDG 1 "end poverty" and SDG 6.b "Citizen participation in decision-

making". In addition, having explored, looking at the use of this data by the utility provider, South West

Water, to detect customer leaks and manage the repair/replace work lifecycle using an interactive web

application linked to the FIWARE system fully participated at the green-digital transition of Europe.

In terms of replication and upscaling of the models and tools developed in this EU demo case during

the F4W project, it can be envisaged. Hence, the work completed as part of this F4W demo case in

development of a utility application and customer smart meter application will be directly re-useable

by South West Water for other customers across their region. South West Water has already

committed to the installation of an additional 65,000 smart meters across their North Devon region by

2025 since this project completed.

The Utility application is built so that any new smart meter installations will be visible within the

application and therefore the underlying approach of searching, filtering and prioritising based on

leakage volumes will continue to be used. Similarly, the underlying code behind the customer smart

meter application could be re-useable, with minimum effort, should South West Water or another

utility continue with the development and deployment of the customer smart meter application.

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 31 / 32

VIII. Recommendations

This section of the reports draws on the experiences of the development project to highlight
recommendations for best/better practice for future projects

VIII.1. Working with FIWARE

FIWARE has been an incredibly useful technology for this project, providing a straightforward and
generally easy-to-use environment for managing data, in particular time series data, without the need
to resort to SQL/no SQL databases. However, the FIWARE paradigm can be difficult to follow. It is
recommended that developers that are new to FIWARE should look to develop their familiarity with
FIWARE through small learning activities prior to engaging on project-based activities. The Stellio
‘beehive’ API walkthrough (https://stellio.readthedocs.io/en/latest/API_walkthrough.html) is a good
starting point and the CIM NSGI-LD specifications
(https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.05.01_60/gs_CIM009v010501p.pdf),
though it is worth noting that not all context broker implementations follow the specification exactly.

VIII.2. Data Collection and interpretation

There was an initial assumption within the project that data collection would be completely reliable,
though this was soon abandoned given gaps in data collection, typically caused by vehicles parking
over ground-based meters blocking data transfer. For this project, it was not a huge issue as the key
data, ‘total consumption’, would eventually be transmitted to the FIWARE broker and the nature of
the data was such that missing consumption data could be ‘infilled’ along a straight-line estimate.
However, the same could not be said for the continuous flow attributes which would limit the
performance of leak detection.

The resulting recommendation is that consideration needs to be given to the data being collected, the
impact of data loss and the likelihood and approaches, if appropriate, for data reconstruction and
interpolation.

VIII.3. Development enviroments

Much of the initial development in this project was geared around applications interacting with the
FIWARE broker. Whilst this worked well for early development activities, it did become increasingly
difficult to work in testing, particularly with edge case generation and detection as there was a strong
desire to keep testing data away from the live data in the broker.

It is recommended that developers working with FIWARE should look to implement a devops style
environment, such that functionality can be developed, tested and operated in separate, but
functionally and structurally environments. We found that moving to a containerised environment
with Docker enabled a far more compartmentalised approach to development. It is also recommended
for developers that are looking at containerised environments should look to develop their Docker
expertise before moving onto a live development project and avoid using a current project as a learning
environment.

https://stellio.readthedocs.io/en/latest/API_walkthrough.html
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.05.01_60/gs_CIM009v010501p.pdf

F4W-D3.4-FIWARE-AppCustomers_finalV2.docx 32 / 32

VIII.4. Data security

This recommendation is closely related to section VIII.3, in that developing in a purely live environment
raises clear issues about data security, in that if errors are made to the live FIWARE broker, the result
could be the loss of live data. This creates a broad recommendation that consideration should be given
to data security, to ensure that live data is not lost.
In addition, a data policy should be developed to determine how data can be duplicated from a live
server into test environments and how data can be backed up, achieved and recovered as necessary

References

[1] X. Huang, Y. Ye, L. Xiong, R. Lau, N. Jiang and S. Wang, “Time series k -means: A new k -means type
smooth subspace clustering for time series data,” Information Sciences, Vols. 367-368, pp. 1-13,
2016.

[2] S. Aghabozorgi, S. Seyed Shirkhorshidi and T. Ying Wah, “Time-series clustering – A decade
review,” Information Systems, vol. 53, pp. 16-38, 2015.

[3] A. Ibrahim, F. Memon and D. Butler, “Seasonal Variation of Rainy and Dry Season Per Capita Water
Consumption in Freetown City Sierra Leone.,” wATER, vol. 13, no. 4, p. 499, 2021.

[4] A. Kalbusch, E. Henning, M. Brikalski, F. Luca and A. de and Konrath, “Impact of coronavirus
(COVID-19) spread-prevention actions on urban water consumption,” Resources, Conservation
and Recycling, vol. 163, 2020.

[5] Y. Wang, H. Yao and S. Zhao, “Auto-encoder based dimensionality reduction,” Neurocomputing,
vol. 184, pp. 232-242, 2016.

[6] Z.-H. Zhou and W. Tang, “Clusterer ensemble,” Knowledge-Based Systems, vol. 19, no. 1, pp. 77-
83, 2006.

