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Executive Summary 

The Amsterdam West Wastewater Treatment Plant (Amsterdam West WWTP), owned by Waternet, 

has a capacity of 1 million population equivalent that serves the city of Amsterdam and consists of 7 

treatment lanes. The climate footprint of the WWTP is by a substantial part negatively impacted by 

greenhouse gas (GHG) emissions and energy consumption for aeration. However, the current 

operational control of the WWTP is locally distributed and the existing control loops are not tuned for 

reducing climate impact effects. Hence, to enable more effective plant-wide control, the aim of this 

demo case is formulated as improving the use of near real-time plant data and external data sources 

to minimise the climate footprint of the WWTP, while meeting effluent quality criteria. This report 

describes the methods, algorithms and concepts which are applied in the development of a collection 

of smart applications. To this aim, one of the treatment lanes of Amsterdam West WWTP has been 

converted into a research lane where various sensors have been deployed. The resulting extensive 

sensor data set allowed further analysis and enabled the development and training of data-driven 

models which served as core components of the smart applications. 

The WWTP smart application suite consists of (i) an automatic data validation and reconciliation (DVR) 

framework where crucial sensor data (ammonium and nitrate) is checked for errors and anomalous 

data values are reconciled by model predictions, (ii) monitoring (‘soft sensor’) algorithms which 

estimate the influent flow per treatment lane and (current) air flow to the aeration tanks, allowing the 

calculation of load and energy consumption respectively, (iii) a data-driven  model, also referred to as 

the digital twin of the WWTP, that estimates nitrous oxide (N2O) gas emissions and other key process 

variables and (iv) an AI-based control agent that minimises N2O emissions and energy consumption, 

while complying with the effluent quality requirements. Finally, output of the data validation, soft 

sensor and control agent is sent to dashboards to inform the user of the operational state of the WWTP 

research lane. For all applications, algorithms from the field of AI have been applied, trained and 

tested. To this aim, sensor data have been collected, examined and prepared for further training and 

selection of the data-driven AI models. Models have been selected using test data sets using 

performance indicators for prediction accuracy and preventing under- or over-parametrization.  

Development, training and selection of the models led to the following, specific conclusions and 

perspectives for each application case:  

i. The autoencoder neural network models of the DVR proved to be highly accurate for 

forecasting NO3 and NH4 when forecasting with a window from 5 minutes to about 2 hours. 

There is room for improvement for longer prediction horizons, e.g. by training and deploying 

another autoencoder model with a time resolution of 1 hour or more. Overall, the DVR 

promises to provide a robust and accurate screening and correction layer for further use of 

sensor data in the digital twin and control agent – especially for anomaly events with a short 

duration. The DVR procedure can be easily extended to other sensor signals; 

ii. The soft sensor for the influent volumetric flow is a recurrent neural network that is able to 

accurately forecast the influent flow per treatment lane with a horizon of 75 minutes, which is 

key for using these data for smart control purposes. The soft sensor is fed by the total influent 

volumetric flow, rainfall data and a rule-based model estimate of the flow per lane. 

Furthermore, the soft sensor for estimating the air flow is important for the estimation of 

energy consumption per treatment lane, and therefore a crucial input for smart control. and 

has been successfully trained on valve settings, pressure and energy consumption of the 

blowers. 



 

F4W-D3.3-FIWARE-AppWastewaterTreatment_final.docx  4 / 98 

iii. The digital twin model predicts process variables which are relevant for getting insights in the 

WWT process, and serves as a basis for the smart control agent. The idea of feeding the digital 

twin with validated sensor signals as well as unmeasured key process variables (e.g. air flow) 

is a proof of concept which is very suitable for other (water) industrial processes due to its high 

performance in accuracy. Furthermore, the outputs of the digital twin have multiple 

advantages: (i) increased process insight, (ii) (more accurate) insight into key performance 

indicators (e.g. energy, climate impact), (iii) means of decision support in case the digital twin 

is used to simulate process behaviour e.g. when shutting of the blowers for maintenance, (iv) 

serves as a virtual copy of the plant such that optimal control policies can be calculated on the 

fly. 

iv. The control agent is trained using the outputs of the digital twin model and the influent soft 

sensor, and different training data sets were selected to allow evaluation of different 

responses to weather conditions. A deep reinforcement learning (DRL) approach has been 

followed and two algorithms are used to solve two similar formulations of the optimisation 

problem. In addition, two reward functions have been formalized to represent the objective 

for minimising climate impact and penalising the exceedance of NO3 and NH4 concentration 

thresholds of which one reward function penalises high NO3/NH4 concentrations more than 

the other. Moreover, the agents' learned control policies are benchmarked against three 

control scenarios: i) a baseline, conventional WWTP control where setpoints are fixed by 

operators, ii) random control policies and iii) classical optimization run offline on the different 

setups. Reward function evaluations show that the RL learnt policies approach the function 

evaluations of 'classical', off-line optimization runs, hence indicating a promising outcome in 

case the DRL control agent will be deployed. As a recommendation and as a first step in 

deployment, carefully running the control agent for short periods of time should be considered 

to get data sets which allow fine-tuning of the control model to improve the controller's 

performance.   

In summary, this demo case (i) showcases the excellent performance of using AI models in the water 

sector, and proves that AI can substantially contribute to the intelligent control of a WWTP, (ii) gives 

insights in the reduction of nitrous oxide emissions and the influence of control actions based on the 

outcome of the DVR, digital twin and soft sensors, as well as the experimentation with control policies 

and evaluation of results and (iii) contributes to reducing climate impact. Specifically, it is estimated 

that half of the climate footprint of Waternet is linked to nitrous oxide emissions from WWTPs.  

As such, the demo case Amsterdam West WWTP directly contributes to the acceleration of the dual – 

green and digital – transition, which is seen as a necessity in order to reach the climate goals by 2030. 

Ultimately, the outcome of this task and work package will assist in bridging science to practice and 

science to policy across Europe. The EU added value (EAV) is detailed in Section VII. 
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