

D2.1 Specification of system
architecture for water consumption and
quality monitoring

Author: Fernando López (FF)

Co-Authors: Alberto Abella (FF), Ludovic Bideau (3S), Aitor Corchero (EUT),

Stéphane Deveughèle (3S), LLuis Echeverria (EUT), Fernando López (FF), Benoit

Orihuela (EGM), Sonia Siauve (OIEau), Chris Sweetapple (Unexe)

June 2020

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under
Grant agreement No. 821036.

Disclaimer

This document reflects only the author's view. The European Commission is not responsible for any use
that may be made of the information it contains.

Intellectual Property Rights

© 2019, Fiware4Water consortium

All rights reserved.

This document contains original unpublished work except where clearly indicated otherwise.

Acknowledgement of previously published material and of the work of others has been made

through appropriate citation, quotation, or both.

This document is the property of the Fiware4Water consortium members. No copying or

distributing, in any form or by any means, is allowed without the prior written agreement of the

owner of the property rights. In addition to such written permission, the source must be clearly

referenced.

Project Consortium

F4W-D2.1 System Architecture 1 / 66

Executive Summary
Because FIWARE4Water project aims to develop a socially and business relevant system architecture for

heterogeneous entities based in FIWARE technology. It is necessary translate the identified requirements

as well as manage the corresponding identified gaps in WP1 in order to create a proper reference

architecture. The present report provides a extend analysis of the current legacy system components

inside the water sector as well as the transport protocol and data representation system. It will be the

base of the description of the corresponding gateways mediation components (a.k.a. IoT Agents in the

FIWARE Ecosystem) to translate to a common standard representation of context information based on

ETSI NGSI-LD.

The first step will be the creation of the corresponding standard data models aligned between ETSI ISG

CIM and ETSI SAREF for representing this context information. To do that, it is mandatory to know how

the FIWARE4Water community and beyond can contribute to the definition of new standard data models.

As a result of all of these activities, a close collaboration between the ICT4Water cluster projects was

established in order to create a common framework of smart data models to be used by all the projects.

Secondly, a deep analysis of the corresponding FIWARE Generic Enablers selected in order to complete

the corresponding FIWARE4Water Reference Architecture. This activity mainly was developed to provide

the proper status of the implementation of NGSI-LD on the different components by the FIWARE

Community and identify the gaps that could be covered by the current project (e.g. IoT Agent – Sigfox,

MLOps and/or AutoML, new standard data models for water sector). All of these gaps are started to be

covered inside the Task 2.2 and Task 2.3. Moreover, deep collaboration channels were established

between FIWARE Community and FIWARE4Water in order to follow the roadmap of implementation of

NGSI-LD inside the FIWARE4Water Reference Architecture. The results of this collaboration activity are

the publication of the following release of FIWARE Generic Enablers with the NGSI-LD functionality by

September 2020 in order to be used by the different FIWARE4Water Use Cases.

Furthermore, the quality monitoring of context information requests the introduction of complex

management, probably at the level of the data model or even applying some further CEP over the context

information. As a result, it is identified several quality mechanisms to cover the corresponding quality of

the provided information and establish the steps for the processes to be defined in the Task 2.2.

FIWARE4Water is focused on providing a reference architecture for serious games. Therefore, it is

important to cope with cybersecurity aspects that any production environment need to put in place.

Moreover, a set of well-known DevOps processed were analysed just to implement the corresponding

FIWARE4Water Reference Architecture. Future work will involve the corresponding implementation of

the NGSI-LD components both in the FIWARE community and FIWARE4Water, the utilisation of the

corresponding MLOps and AutoML concepts and finally the increase of the corresponding Smart Data

Models in the water sector.

Related Deliverables
This document is related to the requirements and conclusions obtained in D1.4 - Gap analysis and final

Requirements and in D7.3 - Data Management Plan. The conclusion obtained on this document will be

the basis for the activities of extensions of FIWARE Components for Cybersecurity, Big-Data and AI defined

in D2.2 as well as the support of water management and quality monitoring use cases defined in D2.3.

The description of procedures, the tutorials as well as the F4W-RA will be the base for WP3 and WP4 and

the corresponding demonstrators (D3.1 – D3.5, D4.1-D4.5), and for lessons learned (D3.6, D4.6).

F4W-D2.1 System Architecture 2 / 66

Document Information
Programme H2020 – SC0511-2018

Project Acronym Fiware4Water

Project full name FIWARE for the Next Generation Internet Services for the WATER sector

Deliverable
D2.1: Specification of system architecture for water consumption and
quality monitoring

Work Package WP2: Architecture/Data/Ontology/API/Legacy links/Standards

Task
Task 2.1: Legacy-compatible and cybersecure Fiware4Water Reference
Architecture

Lead Beneficiary 10 - FF

Author(s) Fernando López (FF)

Contributor(s)
Alberto Abella (FF), Ludovic Bideau (3S), Aitor Corchero (EUT), Stéphane
Deveughèle (3S), LLuis Echeverria (EUT), Fernando López (FF), Benoit
Orihuela (EGM), Sonia Siauve (OIEau), Chris Sweetapple (EXE)

Quality check Chris Pantazis (NTUA)

Planned Delivery Date M12 (31 May 2020)

Actual Delivery Date M13 (24 June 2020)

Dissemination Level Public (Information available in the Grant Agreement)

Revision history
Version Date Author(s)/Contributor(s) Notes

Draft1 15/05/20 Fernando López (FF), Alberto Abella (FF),
Benoit Orihuela (EGM)

First version of the ToC

Draft2 28/05/20 Sonia Siauve (OIEau) and stéphane
Deveughèle (3S)

Section about Water Legacy
Systems

Draft3 04/06/20 Fernando López (FF), Alberto Abella (FF),
Benoit Orihuela (EGM), Lluis Echeverria
(EUR), Aitor Corchero (EUT)

Complete contribution to the
version

Draft4 07/06/20 Fernando López (FF), Alberto Abella (FF) Sections I, II, III, IV, V, and VI

Draft5 10/06/20 Fernando López (FF), Aitor Corchero (EUR) Improve section V.1

Drafr6 11/06/20 Fernando López (FF), Aitor Corchero (EUR),
Sonia Siauve (OIEau), Chris Sweetapple
(EXE), Alberto Abella (FF)

New section V.12

Draft7 19/06/20 Alberto Abella (FF), Fernando López (FF) Ref to EPANET and final edition

Draft8 22/06/20 Chris Pantazis (NTUA) Review

Final 24/06/20 Fernando López (FF) Final version

Final V2 15/03/21 Fernando López (FF) A section explaining the EU
added-value of task 2.1 has been
added, following RP1 review.

F4W-D2.1 System Architecture 3 / 66

Table of content

Executive Summary ..1

List of figures ..5

List of tables ...6

List of Acronyms/Glossary ..7

Introduction ... 10

I. Core concepts .. 10

I.1. Legacy systems .. 10

I.2. Standardization of Smart Data Models ... 12

I.3. Digital-Twin representation ... 17

I.4. System of systems vision - as mean for data-driven integration of systems ... 21

II. Architecture layers ... 22

II.1. Context Information Gathering: IoT Agents, integration of 3-party systems and legacy systems 24

II.2. Context Information Management: Context Broker, Context connectors ... 26

II.3. Context Information Processing and Visualization .. 27

II.4. Context Data/API management, publication, and monetization .. 28

III. FIWARE-Ready IoT Devices .. 31

III.1. Motivation ... 31

III.2. Testing Scenarios ... 32

IV. Operational aspects ... 33

IV.1. Secure code, from design to delivery ... 34

IV.2. Deployment infrastructure .. 38

IV.3. Cybersecurity in production ... 39

IV.4. Security measures in legacy systems integration .. 40

IV.5. Operation support tools ... 41

V. Data Quality Management aspects .. 43

V.1. Alignment with DMP .. 43

V.2. Precision, accuracy .. 46

V.3. Temporal validation ... 47

V.4. Completeness ... 48

V.5. Out of range data (Outliers) .. 49

V.6. Null / empty values .. 51

V.7. Geolocation correctness .. 52

F4W-D2.1 System Architecture 4 / 66

V.8. Duplicates .. 53

V.9. Inconsistent replicated data .. 53

V.10. Wrong codifications ... 54

V.11. Out of normalized data .. 55

V.12. Simulation options and settings .. 56

VI. Management of data ... 56

VI.1. Data Inventory ... 57

VI.2. Data dictionary .. 57

VI.3. Data management procedures .. 57

VI.4. Dataset registration process. ... 57

VI.5. Unsubscribe process .. 58

VI.6. Evaluation process of changes to dataset ... 59

VI.7. Data registration process for new applications ... 60

VI.8. Process Assignment of permits (data consumption) ... 61

VI.9. Process Creation of new dataset. .. 62

VII. EU Added Value ... 63

Conclusion and Perspectives .. 64

References ... 66

F4W-D2.1 System Architecture 5 / 66

List of figures

Figure 1: Example of a legacy system for quality monitoring at the exit of wastewater treatment plants 11

Figure 2: New approach for specification of Smart Data Models ... 17

Figure 3: Example of a legacy system for quality monitoring of wastewater treatment plants 17

Figure 4: NGSI-LD data model ... 19

Figure 5: Smart Water Management System (F4W Reference Architecture) ... 22

Figure 6: FIWARE Catalogue .. 23

Figure 7: FIWARE4Water reference architecture ... 24

Figure 8: Publish, subscribe, notify paradigm used in F4W RA ... 26

Figure 9: Authentication and basic authorization using FIWARE OAuth2 components ... 29

Figure 10: Authentication and authorization using FIWARE OAuth2 and XACML components 29

Figure 11: FIWARE-Ready IoT Device testing platform ... 31

Figure 12: Precision vs. accuracy ... 46

Figure 13: Quantity undergoing exponential decay time.. 48

Figure 14: Outlier detection and correction over a time series .. 50

Figure 15: Outliers calculation .. 50

Figure 16: Dataset registration process .. 57

Figure 17: Unsubscribe process .. 58

Figure 18: Evaluation process of changes to dataset .. 59

Figure 19: Data registration process for new applications ... 60

Figure 20: Process Assignment of permits (data consumption) ... 61

Figure 21: Process of creation a new dataset ... 62

F4W-D2.1 System Architecture 6 / 66

List of tables

Table 1: Example of languages and software commonly used in the water sector .. 12

Table 2: Comparison between current standardization performed in standardization bodies and De facto

standardization ... 13

Table 3: Get a device ... 32

Table 4: Read the measurement ... 33

Table 5: Send a respond to commands ... 33

Table 6. Open Aire DataCite Metadata fields .. 44

Table 7. Field status defined in DataCite Metadata Schema v3.1 ... 45

Table 8. Data outputs for F4W .. 45

Table 9: Required clause for data model of a Pipe element ... 49

Table 10: SHACL rule to assess certain values for a measurement ... 49

Table 11: JSON schema clause to validate properties (null/empty values) .. 51

Table 12: GeoJSON representation of the information .. 52

Table 13: Example for simple detection of duplicates .. 53

Table 14: Inconsistent data across replicated databases .. 54

Table 15: Example of checksum property in a database ... 55

Table 16: Out of normalization values in a database .. 55

F4W-D2.1 System Architecture 7 / 66

List of Acronyms/Glossary

ACL Access Control List

AI Artificial Intelligence

API Application Programming Interface

APN Access Point Name

AS-i Actuator-Sensor Interface

AutoML Automated Machine Learning

BLE5 The 5th Bluetooth Low Energy core specification

BOD Biological Oxygen Demand

CAN Controller Area Network

CEP Complex Event Processing

CI/CD Continuous Integration/Continuous Deployment

CoaP Constrained Application Protocol

COD Chemical Oxygen Demand

CSV Comma Separated Values

DAST Dynamic Analysis Security Testing

DevSecOps Development, Security and Operations

DMP Data Management Plan

DMR Dynamic Model Representation

DMZ Demilitarized Zone

DNP3 Distributed Network Protocol, v3

EDR Endpoint detection and response

ETSI European Telecommunications Standards Institute

F4W Fiware4Water

FAQ Frequently Asked Question(s)

FIPIO Factory Instrumentation Protocol to manage remote Input/Output

FQN Fully Qualified Name

GDPR General Data Protection Regulation

GE Generic Enabler

GIS Geographic Information System

GPV General Purpose (Water) Valve type

F4W-D2.1 System Architecture 8 / 66

HART Standard analogue signal 4-20mA, with signal modulation

HDFS Hadoop distributed file system

IoT Internet of Things

IP Internet Protocol

IPSec Internet Protocol Security

ISG CIM
Industry Specification Group (ISG) for cross-cutting Context Information
Management (CIM)

ISO International Organization for Standardization

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation – Linked Data

LD Linked Data

LoRa Long Range Wide Area Network

LoRaWAN Low Range Wide Area Network

LP-WAN Low-power wide-area network, also represented by LPWAN

LSS Large-Scale Systems

LWM2M Lightweight Machine to Machine

MFA Multi-Factor Authentication

ML Machine Learning

MLOps DevOps for Machine Learning.

MQTT Message Queuing Telemetry Transport

NB-IoT Narrowband IoT

NGI Next Generation Internet

NGSI Next Generation Services Interface

NGSI-LD Next Generation Services Interface – Linked Data

OPC UA Open Platform Communications (OPC) Unified Architecture (UA)

ORDP Open Research Data Pilot

OWASP The Open Web Application Security Project

PDP Policy Decision Point

PEP Policy Enforcement Point

PRV Pressure Reducing Valve

PSV Pressure Sustaining Valve

QCI Quality of Context Information

RBAC Role-based Access Control

F4W-D2.1 System Architecture 9 / 66

SaaS Software as a Service

SAST Static Analysis Security Testing

SDI Serial Digital Interface

sFTP Secure File Transfer Protocol

SHACL Shapes Constraint Language

SIEM Security Information and Event Management

SIRA Strategic Research Agenda

SMTP Simple Mail Transfer Protocol

SoS System of Systems

SQL Structured Query Language

TCP Transmission Control Protocol

TLS Transport Layer Security

TSS Total Suspended Solids

UML Unified Modelling Language

URI Uniform Resource Identifier

URN Uniform Resource Name

VCS Version control systems

vLAN Virtual Local Area Network

VM Virtual Machine

VPN Virtual Private Network

wM-Bus Wireless M-BUS (Meter-Bus)

WPL Work Packages Leader

WssTP Water Supply and Sanitation Technology Platform

WWTP Wastewater Treatment Plant

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

YAML YAML Ain't Markup Language

F4W-D2.1 System Architecture 10 / 66

Introduction

This deliverable defines the reference architecture, based on the FIWARE platform, that will be developed,

integrated and deployed in the context of the FIWARE4Water project. In particular, it aims at defining a

FIWARE reference architecture in the water domain that can sustain the current user needs, that allows

for a full interoperability with the legacy systems, and that can allow for developing new and innovative

usages, especially in the field of Digital Twin, AI and Big Data.

The first section introduces the core concepts that will be used throughout the document: the legacy

systems that will be integrated with the platform, the data models that will serve as a basis for the context

information, the digital twin representation that will bring the dynamic model representation, and finally

the vision of a system of systems.

The second section presents in detail the different layers of the architecture, the role of each layer and

how they integrate together.

The third section introduces and describes in detail the concept of FIWARE-Ready IoT devices.

The fourth section focuses on the operational aspects of the platform and covers the security aspects

from the code to the deployment platform and the integration with the legacy systems, the continuous

delivery processes, the envisioned deployment platform and the operational tools needed to operate the

platform.

The fifth section details the processes, rules and methodologies that will be used to certify the necessary

quality of context information.

The sixth section deals with the management of the data models and details precisely the processes

related to the design and registration of a new data model.

I. Core concepts

I.1. Legacy systems

Today, the water sector is facing several challenges, such as climate change, population growth, the need

for increasing resilience, and ever-rising customer expectations. At the same time, there is a need to

maintain an affordable service and public trust. All of this can be addressed by new digital technologies

and tools, and the management of large volumes of data provided by the increasing instrumentation of

facilities (infrastructures and networks). These technologies are enabling water utilities to extract

information and subsequent knowledge from their legacy systems to enhance decision-making and

promote water conservation. These aspects will derive in the development of newer digital services for

the water sector. To address the current societal challenges, water managers are more conscious in using

big data, AI, decision support systems and automatic steering to drive an efficient management and

planning of the water resources. These functionalities require new ways of data integration and

knowledge extraction from legacy systems and other IoT systems installed in the water infrastructures.

According with the ICT4WATER Action Plan1 and the Strategic Research Agenda (SIRA) of the WssTP2,

1 https://www.ict4water.eu/index.php/tag/action-plan/
2 https://watereurope.eu/wp-content/uploads/2019/07/Water-Europe-SIRA.pdf

https://www.ict4water.eu/index.php/tag/action-plan/
https://watereurope.eu/wp-content/uploads/2019/07/Water-Europe-SIRA.pdf

F4W-D2.1 System Architecture 11 / 66

newer smart water technologies and digital assets will bring the water sector to a better inclusion of the

society into the water value chain and thus, it will derive into an efficient use of the resources. Therefore,

new reference architecture, data integration, curation and knowledge extraction techniques are one of

the steps to obtain newer insights from the information stored in the legacy systems.

A legacy system is by definition a method, technology, and computer system or application program

already in place. A water legacy system is hence the system developed and used to collect information

from different data sources, to transmit them to a data acquisition and storage system and, to process

them in order to exploit them (visualization, analyse, publishing balance sheets, sharing information, etc.),

as illustrated in Figure 1.

Figure 1: Example of a legacy system for quality monitoring at the exit of wastewater treatment plants

No standards or official guidelines exist to build a water system infrastructure. Each case is unique and

the legacy systems currently operating were built to meet a water manager's needs and using available

technologies. One challenge is often to later upgrade these legacy systems because technologies and

system providers are using different tools with different languages and characteristics. Following is an

example of languages, communication systems and tools usually used in the water sector.

The lifespan of a legacy system (software) is generally 10 to 15 years, but changes are regularly made

during this period; beyond this period, new services required in operation may require the choice of

another legacy system. As for the IT master plans (SDI) for the IS package, they are generally updated

every 3 years.

The main obstacle to upgrade a water legacy system is generally the interoperability between all the

available technologies and tools available for water digitalization. One of the key advantages of the

Fiware4Water platform which system infrastructure is presented in this deliverable is to allow the

integration of all the water legacy systems thanks to the development of specific NGSI-LD connectors. The

connectors to be developed under FIWARE4Water will serve to ingest the information into a cloud and

reference architecture as FIWARE and thus, facilitate the generation of newer digital services and analytics

to bring end users and water managers with needed information for the operation and planning of the

water critical infrastructure.

F4W-D2.1 System Architecture 12 / 66

Table 1: Example of languages and software commonly used in the water sector

Data acquisition

and transmission

Monitoring instrumentation Various commercial Sensors: acquisition of data

and sometimes data processing.

Wired data transmission to a

local Programmable Logic

Controller, with a

communication protocol

Ethernet (Mobdus TCP/IP, Profinet), serial link

(Mobdus, Profibus), HART (standard analogue

signal 4-20mA, with signal modulation), AS-i

(Actuator-Sensor Interface) and sometimes

Ethernet/IP, UniTelway, FIPIO, FipWay, CAN,

CANopen, DNP3 …

Wireless data transmission

to a local gateways or

concentrator

BLE5, wM-bus …

Wireless data transmission

long range

Cellular networks (2G, 3G, 4G, 5G), LP-WAN

(LoRa, Sigfox, NB-IoT) …

Analytical and

storage

infrastructure

Supervision/SCADA InTouch, Topkapi, PCVue, Panorama, WinCC …

Hydraulic models EPAnet, WaterGEMS, InfoWorks, Mike Urban, …

I.2. Standardization of Smart Data Models

The standardization of the information exchanged between the different stakeholders of the water sector
becomes crucial once there is an agreement on the mechanisms of data interchange. These
standardization mechanisms are provided by NGSI through an open specification3. Data models represent
the information objects that interchange between the different agents using the platform. Sharing and
adopting an open specification presents massive externalities. Its value actually depends on its adoption.
The more users the greater is the value.

The FIWARE foundation together with other partners is driving the Smart data models4 initiative to
standardize data models for being freely used across different sectors. Although, the initiative is paying
special attention to the water sector it also comprehends several other domains5. Some other data models
not directly related with water could have direct impact on the water sector and on the data models to
be used (i.e. weather6, devices7, etc).

The initiative has adopted a decentralized approach for data modelling allowing relevant actors of the
sector to participate in the standardization process. Thus, this initiative by driving a decentralized
approach and by using a de facto standardization approach can meet the market speed and requirements.

3 https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf
4 https://github.com/smart-data-models
5 https://github.com/smart-data-models/data-models/tree/master/specs
6 https://github.com/smart-data-models/dataModel.Weather/tree/master
7 https://github.com/smart-data-models/dataModel.Device/tree/master

https://github.com/smart-data-models
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf
https://github.com/smart-data-models
https://github.com/smart-data-models/data-models/tree/master/specs
https://github.com/smart-data-models/dataModel.Weather/tree/master
https://github.com/smart-data-models/dataModel.Device/tree/master

F4W-D2.1 System Architecture 13 / 66

The next paragraph explains why this de facto approach can complement current activities of
standardization bodies. Currently, these entities are the most frequent organizations that create
standardizations and implicitly they are defining the data models to be used.

However, with the increase of the data produced and interchanged between the agents in the water
sector, the standardization process run by these bodies is reaching their limits to provide timely solutions
for the demands of the market.

When there were unmet needs, frequently the biggest players of the sector imposed their specifications
for the standards. But, as previously mentioned, alternative mechanisms are taking emerging relevance.

One of these mechanisms is ‘de facto’ standardization by ad hoc technical groups usually supported by
some organization of the sector. Before further explanation, it is required to define some concepts.

 Standardizing body: Normally a national entity which supports standardization committees
(groups) on different topics.

 Committee / working group: Group of experts proposing a standardization on a certain topic.

 Bias of a standard: The resulting standard only adequately reflects the interests of some of the
agents involved or affected by the topic.

Comparison between current standardization and ‘de-facto’ standardization

Table 2: Comparison between current standardization performed in standardization bodies and De facto

standardization

Concept Standardization body De-facto

Composition
standardization body

Stable Independent entity. By topic. Without need of a
formal organization.

Prestige By official review and accreditation
mechanism.

For the prestige of its members
and its organizations.

Members Organisations are the members of the
standardization body. Their
Representatives participate in the working
groups.

Experts on the topic, members
of relevant organisms in the
thematic. At individual level.

Advantages Control of the composition of the
committees and working groups.

Review of "polarized" standards
Consistency check with other standards
Financing guaranteed for the working
group.

 Adoption of the standard
from the first moment.

 Early detection of issues of
the by use.

 New versions published
quickly and easily.

Disadvantages Very long normalization cycle (years)
Publication of the standard behind the
needs.

Data already coded in alternative ways.

New versions require long revision cycles.

 Possible polarization of the
standard.

 Financing of the working
group.

 Limited Interest collection of
some agents affected by the
standard.

F4W-D2.1 System Architecture 14 / 66

The initiative of Smart data models for water capitalizes the concept of ‘de facto’ standardization. It is a

highly decentralized organisation where different actors can play a relevant role in some sectors (i.e.

water network management) but not to participate in others. The mechanism for standardisation is based

on technical groups and the actual use of the data models is required. Thus, pitfalls are detected in very

early stages.

Regarding the prestige of the members, the initiative is taking advantage of the critical mass provided by

ICT4WATER cluster.

Classification of standardization adoption of data models

Shared data models (standardization) is one of the pillars of data reusability [1]. According to these

authors standardization adoption is classified into 4 levels:

1. Own data model standardization

2. Own ad hoc data model standardization published (harmonization)

3. Local standardization

4. Global standardization

The higher the level the bigger the reusability and the easier becomes the adoption. The smart data

model’s initiative starts their work on the 3rd level when the data model created is being already adopted

and agreed.

Smart Data Models initiative

The Smart Data Models initiative is an initiative to compile, create and curate data models in several

business sectors including Water management. The initiative is currently being promoted by FIWARE

foundation and TMForum as manager entities, but several other companies and organisations are

collaborating in different sectors.

The shared technical assets are published in GitHub (http://smart-data-models.github.com) as a frontend

for the technical resources. But it also has a provisional front end for news and mail lists. It is available in

the development frontend8.

Decentralized approach

The Smart Data Models initiative is a collaborative and decentralized initiative about the creation of

shared data models. These data models include not only water data models but some other sectors, too.

They benefit from cross sector support to expand data models usefulness. For example, weather data

models could affect the water forecast for water reservoirs.

The decentralized approach allows the initiative to include relevant organizations in the curation of the

different data models. It leaves the leadership of the different sectors to groups which already are relevant

in the sector, taking advantage of their knowledge and prestige. The initiative supports the different

sectors by providing consistency between the data models, automatic maintenance of the sites of the

initiative and a governance model.

8 http://data-models.fiware.org

http://smart-data-models.github.com/
http://data-models.fiware.org/

F4W-D2.1 System Architecture 15 / 66

Classification of data models

The data models are classified into domains (Smart Water is one of the domains) and every domain

compiles several subjects (currently there are four subjects for water: Network management,

Consumption, Distribution and Quality). Eventually, new subjects could be created if there are unmet

needs. The subjects include related data models and eventually some shared elements common to the

data models in the same subject or across different subjects.

Consensus for the creation of data models

The initiative uses consensus as the main decision method, however there are also procedures to solve

conflicts and to avoid stopping the evolution of the data models.

Use of existing normalizations

Whenever there is an adopted normalization which has demonstrated to be useful in real case scenario,

it is strongly recommended that the data models will follow their recommendations. For example, the

data models, collected into the Smart Data Models initiative, include the categories defined in several

regulations and standards (e.g. DATEX II in transport, or SAREF4WATR in water domain) to the extent that

it does not impact on the needs of the users. This means that when a standardization is against the interest

of the users, it can be ignored in the implementation of these data models.

Integration with other platforms

The smart data models’ initiative looks for the maximum interoperability with other platforms. In that

sense the data models’ specification are moving (July 2020) to a YAML specification compatible with the

Open API 3.0 with minor modifications. (See Figure 2). This way a user of a data model could on one hand

create an entity for NGSI platform, and on the other hand, create the objects to manage with an API 3.0.

Not only this but also some exports (i.e. CSV and future SQL) will help developers to profit from the data

models for their own developments beyond NGSI but at the same time with payloads that are fully

compatible. Therefore, the gateways for connection with these new applications will attend more to the

protocols than to the data. Another example is the integration with EPANET software with specific data

models adapted to the export for the interaction with this software and that they are already available

through a specific repository named water network management9.

Curation of data models

The consistency of the data models is enhanced by gathering all the different properties defined across

different data models and creating a dictionary that can be queried by any contributor. Thus, there is not

a need to create a customized property for a data model if there is anything equivalent in any other sector.

Furthermore, it provides an additional level of interoperability, not only between data models in a domain

but across domains and subjects.

The initiative also provides agile mechanisms of versioning to allow quick evolution of the data models

but minimising the need of incompatible versions. In that sense the number of mandatory fields are

restricted to a minimum to allow the maximum flexibility on the data model use.

Requirements for contribution

One of the requirements for the contribution of new data models is the existence of actual real case

scenarios where the data models are used. The aim of this requirement is to focus on those data models

9 water network management

https://github.com/smart-data-models/dataModel.WaterNetworkManagement/tree/master
https://github.com/smart-data-models/dataModel.WaterNetworkManagement/tree/master

F4W-D2.1 System Architecture 16 / 66

that are tested and integrated with other tools (i.e. EPANET software) and therefore desk-design errors

are quickly identified and fixed.

Every data model is tested to work on any of the versions of the FIWARE platform and it also includes

payloads examples, therefore users have a simple and effortless method to start testing the data models

without the bother of creating tests’ examples.

Licensing of the data models

The data models are licensed with open license that allow:

 Free use

 Free modifications

 Free sharing of modified versions

 As long as they attribute authorship

In order to release with such licensing a contributor agreement is required to be digitally signed by any

contributor. Thus, the Intellectual property owner provides to the initiative the right of releasing the data

models with an open license (i.e. Creative commons by, Apache 2.0, etc).

Elements included into a data model

A complete data model includes several elements:

 Specification. A document describing the elements included into the data model. Master version

is created in English. The format of the specification (YAML) allows its use with minor treatment

into the source for the creation of open API 3.0 objects. See coming features section for further

options.

 Schema. A json schema file which validates the key-values payloads of the data model.

 Examples (JSON). Several JSON and JSONLD examples are included. Some of them are in json key

values format and others in JSON normalized format.

 Examples (CSV). Although not directly useful for their use in NGSI platform an automatic export

of the examples is created to allow interoperability with other systems and platforms.

 Contributors. Globally for every subject there is a record of the contributors to the data models

in this subject.

 Current adopters. Examples of implementations of the data models are linked here in order to

facilitate the connection with other current users of the data model.

Coming Features

The initiative is under continuous improvement. In the next schema, it is drafted the new automation

process for reducing the effort to contribute to authors and users.

By the end of phase 4 a user would be able to create a complete data model (with all the documents

described in previous paragraph) in a semi-automatic way.

The main input would be a payload meeting the requirements of a use case. Based on that a draft schema

could be automatically generated. Only restrictions and other minor requirements would be necessary to

be added to generate the final version. Based on this final schema a template of the specification would

be generated with only missing the written description of the properties included into the data model.

And finally, based on this schema specification, multiple automatic translations and some additional

payload examples could be generated. Both automated actions are aiming at reducing the efforts required

to contribute and maximize the usefulness of the data models.

F4W-D2.1 System Architecture 17 / 66

Figure 2: New approach for specification of Smart Data Models

I.3. Digital-Twin representation

We can describe a smart service as an interconnection between context information providers and

context information consumers. A provider may be a sensor, a database, an open data repository or even

a context consumer that analyse the data in order to provide new context information. They work

together in order to create applications to manage, process and notify the information that it is required

to offer a service. Of course, each application is associated with the specific environment that it needs to

operate and therefore a completely different mix of context from different sources.

This informational representation of something that is supposed to exist in the real world, physically or

conceptually is called entity and it is the base of the FIWARE Context Information architecture. Within the

FIWARE platform, the context of an entity represents the state of a physical or conceptual object which

exists in the real world. For a simple stock management system, we will only need four entity types. The

relationship between our entities is defined in the following figure.

Figure 3: Example of a legacy system for quality monitoring of wastewater treatment plants

 A Wastewater Treatment Plant (WWTP) is a real-world plant to treat wastewater. Plant entities

would have attributes such as: + A name of the plant e.g. "KWR Plant 1" + An address e.g.

“Australiëhavenweg 15, 1046 BS Amsterdam, Netherlands” + A physical location e.g. 52.3978833

N, 4.7929587,517 E.

F4W-D2.1 System Architecture 18 / 66

 An Abstract WWTP Component is a real-world element in which we proceed with the treatment

of wastewater in the different phases. This component has attributes such as: + a location of the

component e.g. 52.398869 N, 4.791054 E + a maximum capacity + a reference to the Wastewater

Treatment Plant in which this component is included.

 A WWT Sensor is a real-world sensor that measures the quality of the water. This component has

the following attributes: + Biological Oxygen Demand (BOD) level + Chemical Oxygen Demand

(COD) level + Total Suspended Solids (TSS) level.

Therefore, a WWTP in the real-world is represented in the context data by a WWTP entity, and a real-

world WWTP Component found in a WWTP is represented in the context data by a WWTP Component

entity which has a refWWTPlant attribute.

The data models allow to create the abstract version and even to validate if a technical representation

meets the definition and to reject those representations that include wrong or incomplete values

providing a new level of certainty for the managers of the system.

All users of the Internet are familiar with the concept of hypertext links in order to load another content

(page) from a known location. While humans are capable of understanding the relationships between

different entities, computers are unable to express these deductions without additional information. It is

required a well-defined protocol to be able to traverse from one data element to another held in a

separate location (e.g. Biological Oxygen Demand or in our example what is the meaning of BOD, where

are the measurement units, what are the reference levels, and so on).

Creating a readable links system for computers requires the use of a well-defined data format (JSON-LD)

and assignment of unique IDs (URLs or URNs) for both data entities and the relationships between entities

so that semantic meaning can be programmatically retrieved from the data itself.

Properly defined linked data can be used to help answer big data questions, and the data relationships

can be traversed to answer questions like "What is the COD levels of the WWTP Components of the WWTP

X and what is the relationship with the TSS levels on it?"

JSON-LD [2] is an extension of JSON, it is a standard representation format of data to resolve the ambiguity

when expressing linked data in JSON format. The data is structured in a format which is parseable by

machines. In that way, it is easy to compare all data attributes even if they are coming from different data

sources. For example, if two data entities have the name attribute, computers cannot know that both of

them can refer to a "Name of a thing" in the same sense (rather than a Username or a Surname or

something else). Therefore, URLs and data models are used to remove ambiguity by allowing attributes

to have a both short form (such as name) and a fully specified long form (such as an URL like

http://schema.org/name) which easily provide the ability for the machines to discover which attributes

have a common meaning within a data structure.

Additionally, JSON-LD introduces the concept of @context element. The @context element provides

additional information to the entities, which allows for the interpretation of the context information by

machines (e.g. measurement unit, definition of the concept, mandatory attributes, optional one,

etcetera). Finally, the JSON-LD specification enables us to define a unique @type. The type allows the

association of a well-defined data model to the data itself. In Linked Data, it is common to specify the type

of a graph node. This can be obtained based on the properties used within a given object, or the property

for which a node is a value. For example, in the schema vocabulary, the diameter property is associated

with a Valve. Therefore, one may reason that if a node object contains the property diameter, that the

type is a Valve; making this explicit with @type helps to clarify the association.

F4W-D2.1 System Architecture 19 / 66

NGSI-LD [3] is the evolution of the NGSI v2 information model, which has been modified to improve

support for linked data (entity relationships), property graphs and semantics (exploiting the capabilities

offered by JSON-LD). NGSI-LD has been standardised under the ETSI ISG CIM initiative and the updated

specification has been branded as NGSI-LD. The main constructs of NGSI-LD are Entities, Properties and

Relationships in the same way that we have in NGSIv2. Nevertheless, NGSI-LD Entities (instances) can be

the subject of Properties or Relationships. In terms of the traditional NGSI v2 data model, Properties can

be seen as the combination of an attribute and its value. Relationships allow to establish associations

between instances using linked data. Moreover, these relationships between entities comprise a more

complex data model and more rigid definitions of use which lead to a navigable knowledge graph.

Figure 4: NGSI-LD data model

Once again, entities are the core elements. Every entity must use a unique id which is represented in the

format of a URI, often an URN. URIs are also a type, used to define the structure of the data held, which

must also be a URI. This URI should correspond to a well-defined data model (e.g.

WaterNetworkManagement10 data model). For example, the URI https://smart-data-

models.github.io/dataModel.WaterNetworkManagement/Valve/schema.json is used to define a

common data model for a Valve.

If we analyse the Figure 4, entities can have properties and relationships. Ideally the name of each property

should also be a well-defined URI. This URI corresponds to a common concept found across the web (e.g.

http://schema.org/address is a common URI for the physical address of an item). The property has a value

which reflects the state of that property (e.g. name="KWR Plant 1"). Finally, a property may itself have

further properties (a.k.a. properties-of-properties). In these cases, properties reflect further information

about themselves. Properties and relationships may also have a linked embedded structure (of properties-

of-properties or properties-of-relationships or relationships-of-properties or even relationships-of-

relationships) which lead to the following:

10 https://github.com/smart-data-models/dataModel.WaterNetworkManagement

https://smart-data-models.github.io/dataModel.WaterNetworkManagement/Valve/schema.json
https://smart-data-models.github.io/dataModel.WaterNetworkManagement/Valve/schema.json
https://github.com/smart-data-models/dataModel.WaterNetworkManagement

F4W-D2.1 System Architecture 20 / 66

An NGSI-LD Data Entity (e.g. a Valve):

 Has an id which must be unique. For example, urn:ngsi-ld:Valve:valve001,

 Has a type which should be a fully qualified URI of a well-defined data model. Authors can also

use type names, as shorthand strings for types, mapped to fully qualified URIs through the

JSON-LD @context (e.g. https://schema.lab.fiware.org/ld/context.jsonld#Valve).

 Has a property of the entity, for example, a diameter attribute which holds the valve diameter.

This can be expanded into http://schema.org/address, which is known as a fully qualified name

(FQN). (e.g. https://github.com/smart-data-

models/dataModel.WaterNetworkManagement/blob/master/WaterNetworkManagement-

schema.json#/definitions/ngsildProperty).

 Has a relationship of the entity, for example, a valveCurve field, where the relationship valveCurve

corresponds to another data entity (e.g. urn:ngsi-ld:Curve:fAM-8ca3-4533-a2eb-12015). It is only

required when valveType is equal to GPV.

This example shows us the well-defined knowledge graph and we can expand the relationships

indefinitely.

Once we have defined all the static context information, we can move to the representation of the

dynamic context information or Dynamic Model Representation (DMR). System models can be

represented by different DMR. Once that we have a clear and well-defined governing equation, the system

characteristics as well as the response of the system can be modelled. It can be represented as an equation

or differential equation and in some cases, in which we have to model a complex system, through the use

of a large system of equations.

Furthermore, we need to develop tools that help us model the different DMRs corresponding to each of

the Water environments (e.g. a water network) defined in the corresponding data models. These tools

take the Context Information provided by the sensors (the static view of the real world), a set of historical

data from the sensors and generate the corresponding dynamic view through the execution of the

corresponding DMR. In the case of the Water sector, the more widely adopted simulation tool is EPAnet

[4], which is used for modelling a water network and performing simulations on it.

FIWARE4Water is defining the corresponding data models to be used in order to easily model the

behaviour of the Water systems and integrate the simulation inputs and results in the reference

architecture.

Finally, this ability to link the static and dynamic view using NGSI-LD is the core concept of the Digital-

Twin. Reliable data becomes the values of properties describing context entities managed at the Context

Broker layer, also referred as Digital Twin layer. The Digital Twin is the near-real-time digital image of a

physical environment. On the basis of the collected data, the simulation of quality behaviour as well as

water distribution systems will be made possible. The goal is to provide a system that is able to keep the

data up-to-date with reality, instruct and notify the appropriate changes to the systems (e.g. wastewater

treatment plan or water distribution system) in the event of a change in the overall status of the real-

world.

https://schema.lab.fiware.org/ld/context.jsonld#Valve
https://github.com/smart-data-models/dataModel.WaterNetworkManagement/blob/master/WaterNetworkManagement-schema.json#/definitions/ngsildProperty
https://github.com/smart-data-models/dataModel.WaterNetworkManagement/blob/master/WaterNetworkManagement-schema.json#/definitions/ngsildProperty
https://github.com/smart-data-models/dataModel.WaterNetworkManagement/blob/master/WaterNetworkManagement-schema.json#/definitions/ngsildProperty

F4W-D2.1 System Architecture 21 / 66

I.4. System of systems vision - as mean for data-driven

integration of systems

The internet of things (IoT) has a revolutionary potential. A smart web of sensors, actuators, cameras, and

other connected smart devices that provide us context information allowing us an unprecedent level of

control and automation of Large-Scale Systems (LSS).

The subject of LSS involves a multitude of issues of both analysis and design. LSS usually are decomposed

into smaller subsystems for controller design or their constituencies are not centrally located together [5].

Large scale systems are common in applications such as chemical process control, power generation and

distribution water supply network, among others. LSS can be integrated together to compound more

complex systems called System of Systems (SoS).

To truly understand the concept of SoS, we could start by looking at how a water distribution plant works.

A water distribution plant is an example of this concept. Many systems operate various parts of the plant

to get information of the water quality, increase or decrease the pressure of the pipe, and estimate the

consume spike of the population. The complete plant is just only work with all its systems work together

in a tandem and there is no proper water distribution if these systems work independently of each other.

The emerging SoS concept describes the large-scale integration of many independent and autonomous

systems, possibly heterogeneous, but functional, with the main purpose to tackle with a concrete

necessity, lower the operational costs and increase the reliability of complex systems. From our water

distribution plan, each of the multi-systems deployed are totally independent from each other but each

one of them affects the other. The fusion of all these systems often results in different problems mainly

related to system interoperability, shared meaning of context information and so on, that are not

presented in the design of other single, but complex, systems.

Therefore, SoS is a novel approach for the deployment of integrated, multi-vendor digital solutions that is

designed to maximize both maintainability, interoperability, scalability, and sustainability aspects.

Attributes like interconnectivity, performance, traceability, and cybersecurity should be considered to

generate these intelligent platforms. It is clear that no single company will be able to provide the best

solution for all these challenges. Furthermore, the smart water domain is very broad, specialized and

diverse. In fact, it is usually needed to count with different solution providers to deal with each water

scenario for a concrete use case, which may involve multiple applications with very diverse metering

systems working all of them together at the same time.

Moreover, there is a great opportunity to integrate innovative solutions coming from different

stakeholders. It will be based on the integration of context information generated by different context

providers to build a holistic picture of what is going on. As a consequence, Smart Water Management

Systems will be able to provide users an integrated and comprehensive view, surrounding context

information from different verticals and horizontal solutions. It also covers the integration of third-parties

context information (e.g. weather, satellite observations, etc.) through the same common interfaces and

data models. In the end, Context Information associated with any water application will be enriched with

contributions coming from different vertical solutions (SoS), all of them able to share data among each

other on a common representation format and enabling a further optimization of processes, saving time,

money and resources.

Besides, it is clear that the harmonized data models are the key concept behind the SoS. The availability

of shared, well-adopted context information models is a fundamental interoperability mechanism for

enabling a global market for IoT-enabled Digital Water Management Applications based on a SoS

approach. This allows developing solutions for sector-specific focus while maintaining cross-domain

F4W-D2.1 System Architecture 22 / 66

consistency. In particular, NGSI-LD is the information meta-model through which concrete, domain-

specific data models can be expressed in a coherent way across different domains. Therefore, data models

and NGSI-LD are the cornerstone of the FIWARE4Water SoS scheme because they define the harmonised

representation formats and semantics that will be used both by water management applications to

consume data (through the northbound interfaces) and context providers at the southbound (sensors,

existing information systems or open databases) to publish data. Furthermore, data models are one of

the key “interoperability points” allowing the participation in a digital single market.

For materializing this ambition, FIWARE4Water is taking into account the concept of “System of Systems”

applied to the water sector, where multiple Water Management solutions, based on FIWARE open source

components, can be harmonized, combined and managed by a Smart Water Management Systems.

Figure 5: Smart Water Management System (F4W Reference Architecture)

This approach offers us a huge amount of benefits. Firstly, the use of NGSI-LD is the kind of open standard

API required for the integration of solutions provided by multiple parties, which avoids the vendor lock-in

problem. Secondly, FIWARE already brings a rich suite of open source components (a.k.a. FIWARE Generic

Enabler) integrated with the core Context Broker technologies which we will see in more detail in section

II – Architecture Layers.

II. Architecture layers

FIWARE (https://www.fiware.org) is a curated framework of open source platform components which can

be assembled together with other third-party platform components in order to accelerate the

development of Smart Solutions. The main and only mandatory component of any “Powered by FIWARE”

platform or solution is a FIWARE Context Broker Generic Enabler, bringing a cornerstone function in any

https://www.fiware.org/

F4W-D2.1 System Architecture 23 / 66

smart solution with the purpose to manage the context information created from one or different context

providers and consumed by one or several context consumers.

FIWARE NGSI is the API exported by a FIWARE Context Broker, used for the integration of platform

components within a "Powered by FIWARE" platform and by applications to update or consume context

information. FIWARE NGSI API specifications have evolved over time and now it is a standard under the

umbrella of ETSI ISG CIM group (https://www.etsi.org/committee/cim) which the name ETSI NGSI-LD

standard. The FIWARE Community plays an active role in the evolution of ETSI NGSI-LD specifications

which were based on NGSIv2 and commits to deliver compatible open source implementations of the

specs. The FIWARE Community, with the aid of F4W, plays an active role in the evolution of ETSI NGSI-LD

specifications and commits to deliver compatible open source implementations of the specs (e.g.

Orion-LD, Scorpio, and Stellio).

Figure 6: FIWARE Catalogue

Building around the FIWARE Context Broker, a rich suite of complementary FIWARE Generic Enablers are

available, dealing with the following functionalities:

 Core Context Management manipulates and stores context data so it can be used for further

processing.

 Interfacing with the Internet of Things (IoT), Robots and third-party systems, for capturing

updates on context information and translating required actuations.

 Processing, analysis, and visualization of context information, implementing the expected smart

behaviour of applications and/or assisting end users in making smart decisions.

 Context Data/API management, publication, and monetization, bringing support to usage control

and the opportunity to publish and monetize part of managed context data.

FIWARE is not about taking it all or nothing. We are not forced to use these complementary FIWARE

Generic Enablers. We may integrate third platform components to design the hybrid platform of our

choice. In fact, F4W will be focused on a subset of these components to provide a F4W Reference

Architecture based on the ETSI NGSI-LD standard.

https://www.etsi.org/committee/cim

F4W-D2.1 System Architecture 24 / 66

Figure 7: FIWARE4Water reference architecture

This figure provides us an overview of the different FIWARE Generic Enablers that were selected by F4W

in order to create the reference architecture based on NGSI-LD.

It is important to mention that as long as any service or solution uses the FIWARE Context Broker

technology to manage context information, this platform can be labelled as “Powered by FIWARE” and

solutions built on top of it can be labelled as well. The section III describes the concept of FIWARE-Ready

IoT Devices and the procedure that has to be followed in order to obtain the “Powered by FIWARE” label.

The section is organized in the following way. Subsection III.1 describes the overall concepts of the generic

enablers selected to offer the context information gathering. Subsection III.2 describes in detail the core

components of the FIWARE4Water Reference Architecture. Subsection III.3 describes in detail the

components used to process, analyse, and visualize the context information. Subsection III.4 describes all

the components related to the identity management and access control solutions. Finally, subsections

III.5 describes data publication and trading.

II.1. Context Information Gathering: IoT Agents, integration of

3-party systems and legacy systems

A number of Generic Enablers are available, making it easier to interface with the Internet of Things,

Robots and Third-party systems for the purpose of gathering valuable context information or trigger

actuations in response to context updates. Using sensor data or acting upon these sensors requires an

interaction with a heterogeneous environment. These environments are compound by several devices,

which are using different protocols, mainly due to the lack of globally adopted standards, accessible

through multiple wired and/or wireless technologies.

The main purpose of these components is to provide a gateway to translate those legacy systems, both

transport protocol and payload format, to the corresponding NGSI and ETSI NGSI-LD protocol, which is

F4W-D2.1 System Architecture 25 / 66

the FIWARE standard API for data exchange model. Of course, we do not need these components if the

devices or gateways natively support the NGSI-LD API. In the FIWARE terminology, these components are

called IoT Agents.

Additionally, we are able to trigger commands to our actuation devices by updating specific command-

related attributes in the associated NGSI entities representation at the Context Broker. This way, all

hardware interactions with IoT devices can be handled by the Context Broker, using a homogeneous

NGSI-LD interface.

FIWARE Catalogue offers a wide range of IoT Agents, making it easier to interact with the FIWARE

technology using them. They are covering the more widely used IoT protocols in the market (LWM2M

over CoaP, JSON or UltraLight over HTTP/MQTT, OPC-UA, Sigfox or LoRaWAN).

For the purpose of the FIWARE4Water, we have identified a subset of the entire components that can be

used in the F4W Reference Architecture:

 IoT Agent for JSON (https://github.com/telefonicaid/iotagent-json) - a bridge between

HTTP/MQTT messaging (with a JSON payload) and NGSI/NGSI-LD.

 IoT Agent for LWM2M (https://github.com/telefonicaid/lightweightm2m-iotagent) - a bridge

between the Lightweight M2M protocol and NGSI/NGSI-LD.

 IoT Agent for Ultralight (https://github.com/telefonicaid/iotagent-ul) - a bridge between

HTTP/MQTT messaging (with an UltraLight2.0 payload) and NGSI/NGSI-LD.

 IoT Agent for LoRaWAN (https://github.com/Atos-Research-and-Innovation/IoTagent-

LoRaWAN) - a bridge between the LoRaWAN protocol and NGSI/NGSI-LD.

 IoT Agent for OPC-UA (https://github.com/Engineering-Research-and-Development/iotagent-

opcua) - a bridge between the OPC Unified Architecture protocol and NGSI/NGSI-LD.

 IoT Agent for Sigfox (https://github.com/telefonicaid/sigfox-iotagent) - a bridge between the

Sigfox protocol and NGSI/NGSI-LD.

 IoT Agent Library (https://github.com/telefonicaid/iotagent-node-lib) - library for developing our

own IoT Agent, almost all the IoT Agents are using this library to develop their concrete bridge

between legacy systems and NGSI/NGSI-LD.

FIWARE Community offers different tutorials in order to understand the use of the IoT Agents (see

https://fiware-tutorials.readthedocs.io/en/latest/iot-sensors/index.html) as well as the development of

any needed new IoT Agent based (see https://iotagent-node-lib.readthedocs.io/en/latest) on the

corresponding IoT Agent Library. Additionally, FIWARE Community developed a tutorial in order to

understand the concept behind linked data and how it is managed by FIWARE components through

NGSI-LD (see https://fiware-tutorials.readthedocs.io/en/latest/linked-data/index.html).

Finally, Further information about these components, and other not mentioned here to support NGSI-LD

FIWARE4Water Reference Architecture implementation, can be found on dedicated pages provided by

the FIWARE Community for IoT Agents (https://github.com/FIWARE/catalogue/blob/master/iot-

agents/README.md), Robotics

(https://github.com/FIWARE/catalogue/blob/master/robotics/README.md) and Third-Party Systems

(https://github.com/FIWARE/catalogue/blob/master/third-party/README.md).

https://github.com/telefonicaid/iotagent-json
https://github.com/telefonicaid/lightweightm2m-iotagent
https://github.com/telefonicaid/iotagent-ul
https://github.com/Atos-Research-and-Innovation/IoTagent-LoRaWAN
https://github.com/Atos-Research-and-Innovation/IoTagent-LoRaWAN
https://github.com/Engineering-Research-and-Development/iotagent-opcua
https://github.com/Engineering-Research-and-Development/iotagent-opcua
https://github.com/telefonicaid/sigfox-iotagent
https://github.com/telefonicaid/iotagent-node-lib/
https://fiware-tutorials.readthedocs.io/en/latest/iot-sensors/index.html
https://iotagent-node-lib.readthedocs.io/en/latest/
https://fiware-tutorials.readthedocs.io/en/latest/linked-data/index.html
https://github.com/FIWARE/catalogue/blob/master/iot-agents/README.md
https://github.com/FIWARE/catalogue/blob/master/iot-agents/README.md
https://github.com/FIWARE/catalogue/blob/master/robotics/README.md
https://github.com/FIWARE/catalogue/blob/master/third-party/README.md

F4W-D2.1 System Architecture 26 / 66

II.2. Context Information Management: Context Broker,

Context connectors

The context information management is the key and first topic that every solution has to put on top of

the table to be considered a “smart” solution. FIWARE provides the bricks to produce, gather, publish,

and consume context information at large scale and exploit it to transform the application into a real

smart application. Context information is represented in this environment through values assigned to

attributes that characterize the entities used in our application.

Inside this group of components, a Context Broker Generic Enabler is the core and mandatory component

of any “Powered by FIWARE” platform or solution. Therefore, it is the core component of our

FIWARE4Water Reference Architecture, and all the rest of components are connected to it. It enables to

manage context information in a highly decentralized and large-scale manner. For this purpose, the F4W

architecture is based on the paradigm of publish/subscribe/notify. It is well adapted to the nature of

distributed interaction in large-scale applications. This paradigm allows subscribers to register their

interest in an event, or a pattern of events, and be asynchronously notified of events generated by

publishers.

Figure 8: Publish, subscribe, notify paradigm used in F4W RA

Both Orion-LD Context Broker, Scorpio and Stellio Generic Enablers, currently provide the ETSI NGSI-LD

API support, which is a simple yet powerful Restful API enabling to perform updates, queries or subscribe

to changes on context information based on linked data, how be described in the section I.3.

 The Orion-LD Context Broker (https://github.com/FIWARE/context.Orion-LD) Generic Enabler is

a NGSI-LD Broker, which supports the NGSI-LD and the NGSIv2 APIs.

 The Scorpio Broker (https://github.com/ScorpioBroker/ScorpioBroker) Generic Enabler is an

alternative NGSI-LD Broker which can also be used in federated environments based on Apache

Kafka technology.

 The Stellio Context Broker (https://github.com/stellio-hub/stellio-context-broker) Generic

Enabler is another alternative NGSI-LD Broker also based on Apache Kafka technology but

including Neo4J graph database for context management as well as timeseries (TimescaleDB) and

GIS (PostGIS) database for native historical management.

https://github.com/FIWARE/context.Orion-LD
https://github.com/ScorpioBroker/ScorpioBroker
https://github.com/stellio-hub/stellio-context-broker

F4W-D2.1 System Architecture 27 / 66

Accompanying a Context Broker component, as part of Core Context Management, we have a set of

components to persist the context information inside databases or make some short-term historical

management over the data:

● The STH-Comet (https://github.com/telefonicaid/fiware-sth-comet) Generic Enabler allows the

persistence of short-term historical context data (typically months) into MongoDB.

● The Cygnus-LD (https://github.com/telefonicaid/fiware-cygnus) Generic Enabler allows the

persistency of historical context data through the creation of data streams and can be injected

into multiple data sinks, including many popular databases such as PostgreSQL, ArcGIS or public

Open Data Platform like CKAN11. Finally, Cygnus is based on Apache Flume12.

● The Draco (https://github.com/ging/fiware-draco) Generic Enabler is an alternative data

persistence mechanism for managing the historical context information. It is based on Apache

NiFi13 and is a dataflow system based on the concepts of flow-based programming. It supports

powerful and scalable directed graphs of data routing, transformation, and system mediation

logic and also offers an intuitive graphical interface. Currently Draco supports the persistence of

data into MySQL, MongoDB, PostgreSQL, Cassandra, CartoDB and HDFS.

● The Cosmos (https://github.com/ging/fiware-cosmos) Generic Enabler allows simple Big Data

analysis over context integrated with popular Big Data platforms (Apache Spark14 and Apache

Flink15) for stream processing as well as the integration of Machine Learning processing. This is

the base component to process the activities associated with the task 2.2.

Last but not least, there is a specific component to persist the context information inside a precise Time-

series database (CrateDB) that is an incubated generic enabler within the core context management

chapter:

● The QuantumLeap (https://github.com/smartsdk/ngsi-timeseries-api) Generic Enabler supports

the storage of context data into a time series database (CrateDB and Timescale).

Further information about these components, and others which are not mentioned here and support

NGSI-LD FIWARE4Water Reference Architecture implementation, can be found on dedicated pages

provided by the FIWARE Community16.

II.3. Context Information Processing and Visualization

Associated to the Core Context Information components, FIWARE Catalogue provides a set of components

developed to process the information and eventually visualize the inferenced knowledge. These

components follow the Publish/subscribe paradigm like the other components of the FIWARE Catalogue

and basically are context consumers of our smart application. The main purpose, therefore, is making the

process, analyse or visualize context information easier in order to provide new context information for

the purpose of implementing the “smart behaviour”. It is relevant to mention that these context

consumers of content information can produce new context information and therefore can be notified as

well in our smart application through the FIWARE Context Broker.

11 It is possible to use NGSIv2 API and in that case the number of sinks is a little more extended. Please take a

look on the documentation for more details about the different sinks
12 Apache Flume: https://flume.apache.org
13 Apache NiFi: https://nifi.apache.org
14 Apache Spark: https://spark.apache.org
15 Apache Flink: https://flink.apache.org
16 https://github.com/FIWARE/catalogue/blob/master/core/README.md

https://github.com/telefonicaid/fiware-sth-comet/
https://github.com/telefonicaid/fiware-cygnus
https://github.com/ging/fiware-draco
https://github.com/ging/fiware-cosmos
https://github.com/smartsdk/ngsi-timeseries-api
https://flume.apache.org/
https://nifi.apache.org/
https://spark.apache.org/
https://flink.apache.org/
https://github.com/FIWARE/catalogue/blob/master/core/README.md

F4W-D2.1 System Architecture 28 / 66

Inside the FIWARE4Water, we have identified the following components to be used in the F4W Reference

Architecture with NGSI-LD support:

● The WireCloud (https://github.com/Wirecloud/wirecloud) Generic Enabler brings a powerful web

mashup platform making it easier to develop operational dashboards which are highly

customizable by end users. Basically, WireCloud allows for the easy creation of web applications

and dashboards without programming skills and visualization of context information as well as

the control of their environment. This is obtained through the integration of heterogeneous data,

application logic, and UI components (widgets) sourced from the Web to allow the creation of

coherent and value-adding composite applications.

● The Knowage (https://github.com/KnowageLabs/Knowage-Server) Generic Enabler brings a

powerful Business Intelligence platform enabling to perform business analytics over traditional

sources and big data systems built on context history. High customisable, through the

introduction of python code, can provide a wide range of graphic analysis of the data. Knowage is

composed of several modules, each one conceived for a specific analytical domain. They can be

used individually or combined with one another to ensure full coverage of user's requirements

(Big Data, Smart Intelligence, Enterprise Reporting, Location Intelligence, Performance

Management, Predictive Analysis and/or Embedded Intelligence).

● The Perseo (https://github.com/telefonicaid/perseo-core,

https://github.com/telefonicaid/perseo-fe) Generic Enabler introduces Complex Event

Processing (CEP) concept using a rules-based system, enabling us to trigger events (send HTTP

requests, emails, tweets, SMS messages, etcetera) based on notified information received from

the FIWARE Context Broker. This process is executed in real-time, and generates immediate

insight, enabling instant response to changing real-world conditions.

Further information about these components, and other not mentioned here, which support NGSI-LD

FIWARE4Water Reference Architecture implementation can be found on dedicated pages provided by the

FIWARE Community (https://github.com/FIWARE/catalogue/blob/master/processing/README.md).

II.4. Context Data/API management, publication, and

monetization

Context Data/API management, publication and monetization brings support to the usage control and the

opportunity to publish and monetize part of managed context data. It is divided into two sets of

components based on the functionality that they offer, Security Access Components, and API

Management, Data Publication and Monetization.

Handling authorization and access control to APIs

Firstly, FIWARE Catalogue offers a set of tools to allow managing the authentication and authorization

functionalities in the applications and backend services. It is possible through the use of OAuth217

protocol. OAuth 2.0 is the industry-standard protocol for authorization focused on client developer

simplicity and providing specific authorization flows (see figure below).

17 https://oauth.net/2/

https://github.com/Wirecloud/wirecloud
https://github.com/KnowageLabs/Knowage-Server
https://github.com/telefonicaid/perseo-core/
https://github.com/telefonicaid/perseo-fe
https://github.com/FIWARE/catalogue/blob/master/processing/README.md
https://oauth.net/2/

F4W-D2.1 System Architecture 29 / 66

Figure 9: Authentication and basic authorization using FIWARE OAuth2 components

Additionally, it is possible to increase the authorization capability through the introduction XACML

(eXtensible Access Control Markup Language) which is an OASIS standard that describes both a policy

language and an access control decision request/response language (both written in XML) [6]. This

language is used to describe the requirements to access control to context information.

Figure 10: Authentication and authorization using FIWARE OAuth2 and XACML components

The FIWARE Catalogue offers some FIWARE Generic Enablers that implement both the OAuth2 flows and

the XACML management and are adopted in the F4W Reference Architecture.

● The Keyrock (https://github.com/ging/fiware-idm) Generic Enabler is the Identity Management

component that offers secure and private authentication and basic authorization as well identity

federation towards applications. Keyrock is a key security component inside the FIWARE System

of Systems architecture to offer this security capabilities. It also includes the corresponding tools

for administrators to support the handling of user lifecycle functions.

https://github.com/ging/fiware-idm

F4W-D2.1 System Architecture 30 / 66

● The Wilma (https://github.com/ging/fiware-pep-proxy) Generic Enabler is the FIWARE

implementation of the Policy Enforcement Point (PEP) Proxy. This is the component that is located

just in front of the backend applications in order to offer authentication and authorization.

Therefore, it works together with the Identity Management offered by Keyrock and Authorization

Policy Decision Point (PDP) GE offered by AuthZForce.

● The Access Control (https://github.com/authzforce/server) Generic Enabler (a.k.a. AuthZForce)

provides XACML-standard-compliant authorization services and implements the PDP. According

to the OASIS XACML FAQ, “it provides an extremely flexible language for expressing access control

that can use virtually any sort of information as the basis for decisions. It is a functional superset

of other familiar access control schemes, such as permissions, ACLs, RBAC, etc. It is particularly

designed to support large-scale environments where resources are distributed, and policy

administration is Federated.”

Publication and Monetization of Context Information

Last but not least, F4W Reference Architecture also includes a specific component from the API

Management, Data Publication and Monetization list, CKAN Extension. Publishing and consuming open

data is a keystone for the development of applications and the creation of an innovation ecosystem.

CKAN18 is one of the most extended Open Data publication platforms and is becoming the de-facto

standard for data publication in Europe. Moreover, CKAN is an open source platform which means it can

be easily adapted and expanded.

● The CKAN Extension (https://github.com/conwetlab/FIWARE-CKAN-Extensions) integrates CKAN

solution with the FIWARE platform, enabling the right-time context information served by a

FIWARE Context Broker and to be published as a dataset resource, making it easier to be

discovered and consumed as Open Data content. Additionally, this extension allows the

integration with FIWARE Security in order to enrich the access control and enable explicit

acceptance of data terms and conditions, usage accounting, or data monetization. Finally, the

integration with WireCloud lets the data providers create and customize rich visualizations for

their data, without the need of installing new extensions or restarting the platform.

Further information about these components, and other not mentioned here to support NGSI-LD

FIWARE4Water Reference Architecture implementation, can be found on dedicated pages provided by

the FIWARE Community:

 Context Data/API management

https://github.com/FIWARE/catalogue/blob/master/security

 API Management, Data Publication and Monetization

https://github.com/FIWARE/catalogue/blob/master/data-publication/README.md

18 https://ckan.org/

https://github.com/ging/fiware-pep-proxy
https://github.com/authzforce/server
https://github.com/conwetlab/FIWARE-CKAN-Extensions
https://github.com/FIWARE/catalogue/blob/master/security
https://github.com/FIWARE/catalogue/blob/master/data-publication/README.md
https://ckan.org/

F4W-D2.1 System Architecture 31 / 66

III. FIWARE-Ready IoT Devices

III.1. Motivation

Solutions or devices which implement a FIWARE NSGI interface and are able to provide and consume

context information but whose architecture is not “powered by FIWARE”, are referred to as “FIWARE-

ready”. The ability for a Solution or an IoT device to be "FIWARE-ready" can be supplied via the use of

intermediate services such as an IoT Agent which can be used to translate proprietary message formats

and transport protocols to NGSI. FIWARE brings open source libraries for development of IoT Agents as

well as a portfolio of common IoT Agents which can be used to translate from most popular IoT protocols

to NGSI and vice-versa.

Figure 11: FIWARE-Ready IoT Device testing platform

In summary, the ability for an IoT device to be "FIWARE-Ready" can be supplied either directly - with

software on the device or indirectly - via the use of intermediate services such as an IoT Agent (see above)

which can be used to translate proprietary message formats and transport protocols to NGSI.

The devices are checked to ensure that readings from sensors can be sent to the context broker and can

thereafter be retrieved via the NGSI interface. Actuators are checked to ensure that a change of context

made on the Digital Twin held within the context broker results in a real-world action down at the device.

This ensures that full operation of the device is possible through NGSI operations only. Further details on

how to apply as a FIWARE Ready IoT Device can be found here: https://fiware-

marketplace.readthedocs.io/en/latest/device/apply.html.

https://fiware-marketplace.readthedocs.io/en/latest/device/apply.html
https://fiware-marketplace.readthedocs.io/en/latest/device/apply.html

F4W-D2.1 System Architecture 32 / 66

III.2. Testing Scenarios

The following scenarios are prescribed when validating a device:

Create a Service

Objective: Verify that the implementation is capable of creating a new IoT service.

Applicability: Optional

Pass/Fail Criteria: The new IoT service is successfully created in the context broker.

Register a Device

Objective: Verify that the IoT device implementation has been registered in the context broker.

Pass/Fail Criteria: The context broker sends a status code message indicating that the device has been

registered. No error message is received. Thereafter it should be possible to view the digital twin of the

registered device within the context broker and access the context data attributes of the registered

device.

The logs of the context broker can be checked to ensure that the digital twin has been registered

Get a Device

Objective: Verify that it is possible to retrieve the list of existing devices.

Pass Criteria: The registered devices appear in the list.

For example, the following NGSI-LD call will return all devices registered under a specified {service}.

Table 3: Get a device

 curl -X GET \
'{context-broker}/ngsi-ld/v1/entities?type={device}' \
 -H 'NGSI-Tenant: {service}'

This test ensures that the device state can be accessed using NGSI only.

Send the Measurement

Objective: Verify that the device implementation is able to send measurements

Pass Criteria: The measurements are accessible in the Context Broker. This is testing that a device (and

its associated IoT Agent if necessary) is able to communicate using the NGSI protocol with a context

broker. Checks can be made by looking at the context broker logs, and the HTTP status code send on each

update.

F4W-D2.1 System Architecture 33 / 66

Read the Measurement

Objective: Verify that the device implementation is able to read measurements from the Context Broker.

Pass Criteria: The device implementation is able to retrieve the measurements.

This is similar to the get device test, but it also shows that on-going measurements are received in a NGSI

compliant manner as the state of the device (and thus the context) changes.

Table 4: Read the measurement

 curl -X GET \
'{context-broker}/ngsi-ld/v1/entities?type={device}' \
 -H 'NGSI-Tenant: {service}'

Send and Respond to Commands

Objective: For Actuators only, ensure that changes of state made to the NGSI Digital Twin are reflected on

the device itself.

Pass Criteria: The device itself is able to respond to commands sent to the context broker

The meaning of “respond” will vary depending on the class of the device itself, but usually it would be

expected to show that a physical change has occurred based on the attribute changed (e.g. A lamp

switching on when the entity’s state attribute is set to “on”.

Table 5: Send a respond to commands

 curl -X PATCH \
'{context-broker}/ngsi-ld/v1/entities/{lamp}/attrs' \
-H 'Content-Type: text/json' \
-d '{
 "state": {
 "type" : "command",
 "value" : "on"
 }
}'

IV. Operational aspects

From the user requirements emerged some concerns related to the operational aspects of the platform

in general, and to cybersecurity more specifically:

● How to trust Open Source software that is used and integrated into the platform?

● How to deliver an operational, scalable and reactive platform?

● How to ensure the platform stays safe and secure?

● How to monitor the correct behaviour of the platform?

F4W-D2.1 System Architecture 34 / 66

This section is organized as follows: Subsection V.1. describes the quality and security processes to apply

during the development, integration, and deployment of components inside the FIWARE platform.

Subsection V.2. describes the requirements for a deployment infrastructure that can handle current and

future needs of users. Subsection V.3. describes the security measures to apply to a production

environment in operation. Subsection V.4. describes the security measures to apply specifically to the

communication with the legacy systems used by the pilot sites. Subsection V.5. describes the operation

support tools to deploy in order to ensure a correct monitoring of the platform.

IV.1. Secure code, from design to delivery

The first concern relates to the trust and confidence that a user may have in a large platform composed

from the development and integration of many Open Source software and libraries.

This is a legitimate concern and the platform has to define and deploy all the necessary processes and

tools in order to ensure the maximum level of security in the software delivery chain.

Thus, we are proposing here a set of security practices to be applied from the design of a new piece of

software to its delivery in production.

A new term, Continuous Hacking19, started to emerge recently to design this whole process of ensuring

the security chain in software development and delivery. It is associated with the STRIDE acronym:

Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, Escalation. The techniques,

processes and tools described below follow and address these security topics.

Secure by design

The first step in this process is to apply the “Secure by design” principles to all the software that is

specifically developed in the scope of the FIWARE4Water project. It means that the security is taken into

account from the design phase of the application and checked continuously via unit tests focused on

security. For instance, if the application receives some user input, it implies to sanitize the data and

remove any potential malicious characters.

For this, a minimal and recommended practice is to follow the OWASP Top 10 most critical web

applications security risks20 that directly apply to the phase of code design.

As part of this process, unmaintained and outdated dependencies will also be checked. Indeed, according

to a recent survey21, 82% of codebases have components that are more than four years out of date. This

can be a major issue for security concerns, but also for the mid to long term maintenance and

sustainability of the platform. Thus, those identified outdated components will be searched for a

replacement as soon as possible.

To help in these tasks, the selection and integration of a static analysis security testing (SAST) tool will be

realized. A very valuable starting point is the community list of such existing tools that is maintained by

the OWASP22. Nonetheless, it is expected that the selected tool cover at least the following topics:

19 https://thenewstack.io/beyond-ci-cd-how-continuous-hacking-of-docker-containers-and-pipeline-driven-

security-keeps-ygrene-secure
20 https://github.com/OWASP/Top10/blob/master/2017/OWASP%20Top%2010-2017%20(en).pdf
21 https://thenewstack.io/unmaintained-dependencies-and-other-ways-to-measure-ci-cd-security
22 https://owasp.org/www-community/Source_Code_Analysis_Tools

https://thenewstack.io/beyond-ci-cd-how-continuous-hacking-of-docker-containers-and-pipeline-driven-security-keeps-ygrene-secure
https://thenewstack.io/beyond-ci-cd-how-continuous-hacking-of-docker-containers-and-pipeline-driven-security-keeps-ygrene-secure
https://github.com/OWASP/Top10/blob/master/2017/OWASP%20Top%2010-2017%20(en).pdf
https://thenewstack.io/unmaintained-dependencies-and-other-ways-to-measure-ci-cd-security
https://owasp.org/www-community/Source_Code_Analysis_Tools

F4W-D2.1 System Architecture 35 / 66

● Support a rich variety of languages, and at least all the languages used in the components of the

platform

● Detect the security vulnerabilities

● Integrate seamlessly in a CI/CD chain

Not directly related to security, but more general to code quality, some nice-to-have features from a static

analysis tool are the following:

● Detect potential bugs or “code smells” in the source code

● Perform a global quality check on each release

Dependencies scanning

Nowadays, a typical application or microservice in production has 80% of its source code coming from

integrated third-party libraries (which in turn have their own dependencies and so on and so forth).

It is thus very important to integrate a dependency scanning process in order to detect as soon as possible

a security vulnerability introduced by one of these third-party libraries. What is more, to be effective, it

has to be integrated into the whole software development lifecycle: new source code added, deployment

pipeline, external contributions received via a pull request, etcetera.

As of now, some tools have been identified for a careful evaluation (but a larger research will be

conducted):

● Dependabot23, a service provided by GitHub.

● Integrated security alerts in GitHub projects24, as recently made available by GitHub.

● Snyk25.

To be valuable, the security scanning of dependencies has to be part of an automated and continuous

process, with automatic fixes (or suggestions for fixes at least, via pull request for instance) as much as

possible. Thus, it has to be run automatically on a regular basis (for instance, on each pull request, on each

commit on the main branches, etc.) and to be followed by immediate actions when this is possible (for

instance, a deployment of the platform in production if a critical vulnerability has just been fixed).

DevSecOps

DevSecOps26 is an extension of the now classical DevOps paradigm. This term is used to emphasize that

security must be a core part of the software delivery chain and thus must be deeply integrated into the

continuous integration and continuous deployment pipelines.

● For the continuous integration pipeline, it implies at least to cover the following topics:

● Run static analysis security testing

● Run security focused unit tests

● Scan for the security of dependencies

● Secure the Docker containers

23 https://dependabot.com
24 https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-

dependencies
25 https://snyk.io
26 https://www.atlassian.com/continuous-delivery/principles/devsecops

https://dependabot.com/
https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies
https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies
https://snyk.io/
https://www.atlassian.com/continuous-delivery/principles/devsecops

F4W-D2.1 System Architecture 36 / 66

The first three points being covered above, the following will specifically address the Docker containers

security.

The Docker containers security is a large topic by itself. Docker technology is something relatively new,

but very largely widespread. Unfortunately, the security aspect of the containers has not been really

addressed from the beginning and there is now a large surface left for attacks. A lot has been done in the

past months and there are now mature tools and practices to help in dealing with security in a

containerized world. This security field is improving and extending every day, as emphasized for instance

by the recent announcement of a partnership between Snyk and Docker27 to improve the overall security

of Docker containers and integrate this concern at the heart of a software delivery chain.

The Docker containers security can be roughly divided into:

● Container creation best practices

A lot of practices have emerged recently in this field. They range from best practices at the

creation time of a container28,29,30 to the need to run Docker containers as a non-root user31.

These practices will be thoroughly studied and integrated when wiring up the Docker containers

composing the FIWARE4Water platform.

Complementary to this, tools that help in checking and enforcing these best practices will be used

when it is possible to automate the checking (for instance, a tool like Docker Bench Security

(https://github.com/docker/docker-bench-security) may be of great value).

Also, new emerging techniques like Buildpacks (https://buildpacks.io/) from the Cloud Native

Computing Foundation will be considered seriously. Indeed, they provide a higher level of

abstraction for building apps compared to Dockerfiles and thus bring a new experience into

bridging the gap between the source and the Docker packaging of an application and applying

best of breed practices in modern container standards. It also ensures that applications meet

security and compliance requirements without developer intervention.

● Container security scanning

As the FIWARE4Water platform will also reuse some existing third-party containers (at least as a

base to create new containers for the components of the platform), it is also highly recommended

to perform some security scanning on these third-party containers (especially to check they

conform to the same security best practices applied at the container creation time), in order not

to introduce unexpected security flaws into the platform.

As of now, some tools have been identified but a larger research will be conducted before a final

choice: Clair32 and MicroScanner33.

● Image signing

27 https://snyk.io/blog/snyk-docker-secure-containerized-applications
28

 https://resources.whitesourcesoftware.com/blog-whitesource/top-5-docker-vulnerabilities
29 https://snyk.io/blog/10-docker-image-security-best-practices
30 https://thenewstack.io/beyond-ci-cd-how-continuous-hacking-of-docker-containers-and-pipeline-driven-

security-keeps-ygrene-secure
31 https://hub.packtpub.com/docker-19-03-introduces-an-experimental-rootless-docker-mode-that-helps-mitigate-

vulnerabilities-by-hardening-the-docker-daemon
32 https://github.com/quay/clair
33 https://github.com/aquasecurity/microscanner

https://github.com/docker/docker-bench-security
https://buildpacks.io/
https://snyk.io/blog/snyk-docker-secure-containerized-applications
https://resources.whitesourcesoftware.com/blog-whitesource/top-5-docker-vulnerabilities
https://snyk.io/blog/10-docker-image-security-best-practices
https://thenewstack.io/beyond-ci-cd-how-continuous-hacking-of-docker-containers-and-pipeline-driven-security-keeps-ygrene-secure
https://thenewstack.io/beyond-ci-cd-how-continuous-hacking-of-docker-containers-and-pipeline-driven-security-keeps-ygrene-secure
https://hub.packtpub.com/docker-19-03-introduces-an-experimental-rootless-docker-mode-that-helps-mitigate-vulnerabilities-by-hardening-the-docker-daemon
https://hub.packtpub.com/docker-19-03-introduces-an-experimental-rootless-docker-mode-that-helps-mitigate-vulnerabilities-by-hardening-the-docker-daemon
https://github.com/quay/clair
https://github.com/aquasecurity/microscanner

F4W-D2.1 System Architecture 37 / 66

In order to bring confidence in the images used, Docker provides tools and practices to apply and

check image signing34, as it is for instance already done in packages distributed on Linux

distributions. Such image signing will be applied to each image produced by the platform.

For the continuous deployment pipeline, it implies at least to cover the following topics:

● Dynamic analysis security testing (DAST)

In the same way that a static security analysis is performed on the source code during the

continuous integration phase, a dynamic security analysis is performed during the continuous

deployment one.

Currently, the analysis is performed on the running platform, typically deployed in a dedicated

environment, but with a security configuration that has to be the same as the production

environment.

For this specific task, different existing Open Source tools will be evaluated, and a choice will be

made for a proven mature solution. Once again, the OWASP site lists some mature solutions and

a tool like Zaproxy35 has already been identified as a serious candidate.

● Penetration testing

Another very valuable and critical kind of testing is penetration testing. This is a particularly critical

point to be addressed for a water management platform that may be subject to cyberattacks, due

to the highly sensitive nature of the underlying infrastructure.

This is a specific field that is well covered and understood. There already exists tools and

procedures that will be applied on the platform to be deployed. Security assessment tools, like

the aforementioned Zaproxy, can also be used to help and ensure the platform meets the

expected security requirements.

● Chaos engineering

Chaos engineering36 is quite a new field, not directly related to the platform security, but more to

the resilience of the platform.

It has gained a lot of popularity some years ago when Netflix released the now famous Chaos

Monkey37 project. Aimed at running against a production platform, it tries to “inject” some

abnormal behaviour inside the platform (network outage, application failures, …) in the objective

to test the application resilience against a bunch of different external or internal factors. Due to

the criticality of the software that is going to be deployed on the FIWARE4Water platform, this is

an important aspect to be covered.

34

 https://docs.docker.com/engine/security/trust/content_trust
35 https://www.zaproxy.org
36

 https://principlesofchaos.org/?lang=ENcontent
37

 https://en.wikipedia.org/wiki/Chaos_engineering

https://docs.docker.com/engine/security/trust/content_trust
https://www.zaproxy.org/
https://principlesofchaos.org/?lang=ENcontent
https://en.wikipedia.org/wiki/Chaos_engineering

F4W-D2.1 System Architecture 38 / 66

IV.2. Deployment infrastructure

The deployment infrastructure must obey to some requirements:

● Be easily deployable by the technical team of the pilot sites on their infrastructure, as they wished

to.

● Be responsive as the platform deals with real time data management and processing and users

need immediate feedback for decision taking.

● Be highly available as the platform deals with real time data management and processing and

users need feedback at any time for decision taking.

● Be scalable as more in more data and usages will come in and the platform must stay responsive

and performant over time.

Such concerns are deeply tied to the global architecture of the platform and the components that are

integrated. In this respect, it is very important that the platform and its components adhere totally to the

Reactive Manifesto38, which defines the core principles that must be followed by any modern reactive

architecture.

Then, it has to be backed by a deployment platform that will bring the ease of deployment, and the tools

to allow for high availability and scalability.

Nowadays, Kubernetes39 is de facto standard for such deployments:

● Deployments can be formalized and automatized, especially via the use of Helm charts40

● Integrated support for load balancing

● Integrated support for horizontal scaling

● Automatic restart of containers when a node dies or when a container does not respond to health

checks

● Automatic placement of containers based on their requirements

Furthermore, it brings another important feature, by offering to progressively roll out changes to a

deployed platform in production, while monitoring application health to ensure all the services are still

up for the end users. If something goes wrong, Kubernetes will roll back the changes (whether

automatically or manually). This allows for advanced deployment strategies like Blue-Green deployment,

Canary deployments, and so on.

Finally, it is expected a tight integration between the CI/CD tool and the deployment platforms (whether

production, integration, development, …). Existing tools (like JenkinsX41) that permit such a seamless

experience, will be considered first (as long as well-known tools in this domain, like TravisCI42 or

Bamboo43).

38

 https://www.reactivemanifesto.org
39 https://kubernetes.io
40 https://helm.sh
41 https://jenkins-x.io
42 https://travis-ci.org
43 https://www.atlassian.com/software/bamboo

https://www.reactivemanifesto.org/
https://kubernetes.io/
https://helm.sh/
https://jenkins-x.io/
https://travis-ci.org/
https://www.atlassian.com/software/bamboo

F4W-D2.1 System Architecture 39 / 66

IV.3. Cybersecurity in production

As popularized by the Kubernetes project44, the security of a cloud native platform relies in the security

of the 4C’s:

● Security of the code

● Security of the container

● Security of the cluster

● Security of the cloud

The security of the code and of the container are already discussed in detail in the previous sections. The

security of the cluster is described in the following paragraphs.

The security of the cloud will have to be evaluated on a case by case basis, as the pilot sites emitted the

will to host the FIWARE platform on their own premises or within the infrastructure of their usual cloud

provider. Security recommendations will be provided and checked all along the deployment to ensure all

the platforms are deployed according to the best practices in cloud security, with support from the

technical team of the project.

Security of communications

The security of communications applies to different levels:

● First of all, all HTTP communications have to be done through HTTPS (the use of the Certbot

certificate provider45, which is now well established and largely deployed, will be considered first)

● The communications between the FIWARE platform and the legacy systems will be secured with

respect to the security protocols set by each pilot. This is dealt with in the next section.

● The internal communications between the components of the platform should also preferably be

secured. This is typically done by using the TLS cryptographic protocol when exchanging data

between components, to avoid traffic sniffing

● The communications from and to the sensors, via the IoT Agents. The security of these

communications depends on the underlying protocol, so it will be defined and applied on a case

by case basis.

Management of secrets

Every microservice has to know some passwords, secrets or tokens to communicate with other systems

(be it a database, an external service, an authentication provider, and so on). They of course must not be

stored in clear text, not even into a private VCS. A first considered step is to use environment variables

defined only on target hosts. A more robust approach is to encrypt secrets and use an external service to

manage them (for instance HashiCorp Vault46 or Spring Vault47).

44 https://kubernetes.io/docs/concepts/security/overview/#the-4c-s-of-cloud-native-security
45 https://certbot.eff.org
46 https://www.vaultproject.io
47 https://spring.io/projects/spring-vault

https://kubernetes.io/docs/concepts/security/overview/#the-4c-s-of-cloud-native-security
https://certbot.eff.org/
https://www.vaultproject.io/
https://spring.io/projects/spring-vault

F4W-D2.1 System Architecture 40 / 66

Slow down attackers

Eventually, an attacker will try to brute force the authentication to the API in order to gain access to the

system and expose sensitive or confidential data. One measure to mitigate that risk is to slow down such

attacks. This can be done by implementing rate-limiting, whether in the application code or at an API

gateway level. It is also more effective if a SIEM tool is deployed inside the platform, for a quicker reaction

to such events.

Intrusion detection system

The production also has to be protected from intrusions, that means that an intrusion detection system

must be set up (existing tools like Falco48, Suricata49 or else Snort50 will be considered). This eventually can

be completed by a SIEM tool.

Data integrity

Finally, the data at rest in databases has to be encrypted, as it can potentially be leaked in case an attacker

gains access to the platform. As this is an expensive process, only sensitive or confidential data will be

encrypted. The techniques and algorithms depend on each database vendor thus, it will be checked on a

per-database basis, and adapted security measures will be applied on each.

IV.4. Security measures in legacy systems integration

The security measures in legacy systems integration must deal with all the communication chain from the

captors or sensors to the information systems where all the collected data is stored, analysed, processed

and then returned to the users.

For the first step of data acquisition and transmission to the IT systems, the security risk is quite limited

because:

 the information is split among the high number of monitoring instruments

 most of the captors or sensors are physically non-easily reachable

 the source data systems are mainly in industrial environments which are the most secured ones:

dedicated network with no internet links and very restricted accesses, secured protocols of wired

or wireless transmissions (with VPN or private APN if needed).

Even if the water domain is not a privileged target for the cyber-attacks, the security risk increases when

the data is reaching the analytical and storage infrastructure and going through to the data visualization.

In those IT environments (specific applications to collect or display data), developers need to fulfil basic

technical security rules:

48 https://falco.org
49 https://suricata-ids.org
50 https://www.snort.org

https://falco.org/
https://suricata-ids.org/
https://www.snort.org/

F4W-D2.1 System Architecture 41 / 66

 create separate vLANs for each environment where we can include our servers / VMs depending

on their roles. We can create four different vLANs like Backend (the most protected one for the

databases for example), Applicative (for the treatments or modelizations softs), DMZ (for the

Frontends/APIs exposed on the Intranet or Internet, the files transfers, etc.) and Admin (for

administration, support or exploitation components);

 use a strong Active Directory authentication policy to connect to the servers, applicative

Frontends or APIs;

 have a security updates policy for the technical components of the servers (Operating Systems,

communication protocols, antiviral protection, etc);

 manage a Role-based access control for the reachable applications;

 use secure protocols (e.g. HTTPS, TLS, sFTP) for communications, transfers, URLs, Webservices, …

and associated complements if necessary (Reverse Proxy with certificates management, IPSec

VPN tunnel, secured SMTP server, internal tokens, etc).

Technical cybersecurity standards are in constant evolution and must be regularly reviewed and improved

to fulfil all the new associated requirements like MFA (Multi-Factor Authentication), NextGen Antivirus /

Endpoint Detection and Response system (EDR like CrowdStrike for example), proactive vulnerability

detection from the source code (using a “tool” like Veracode for example), and so on.

To finish, the GDPR (General Data Protection Regulation) aspects are now a major security requirement

to take into account when we implement and manage a complete IT system (personal data recognition

and treatment, data retention periods, end user agreement in some cases, etc.).

IV.5. Operation support tools

Operation support tools typically fall into three main categories:

 Monitoring: gather metrics during the runtime operation of the platform, check and ensure they

stay in expected behaviour and ranges and notify when something abnormal occurs is about to

occur.

 Logging: concentrate in one place all the logs produced by the components of the platform,

analyse the messages, inspect past behaviour, and notify when something abnormal occurs.

 Distributed tracing: understand what is happening inside the platform by tracing requests and

exchange of information between the components, and thus be able to correlate and follow

actions and events.

Monitoring is the most fundamental operation support tool. It allows to monitor the behaviour and the

liveliness of the platform at different levels:

 Virtual machines, where it gathers and monitors metrics related to CPU usage, disk space, running

processes, I/O, etc.

 Docker containers, where it gathers and monitors individual metrics related to services running

in Docker containers: memory, CPU usage, etc.

 Individual services, where the main purpose is to check that services are up and responding in a

decent time. It can also be used to monitor internal metrics: HTTP requests received, database

requests, etc.

To be efficient, a monitoring tool must be coupled with an alert manager that will be in charge of sending

alerts detected by the monitoring tool to a list of recipients on one or more communication channels

(SMS, email, …).

F4W-D2.1 System Architecture 42 / 66

From both the monitoring tool and the alert manager, it is expected to be able to define complex alert

rules related to one or more of the metrics gathered on the platform, over configurable periods of time.

It is also expected that the recipients can be dynamically determined on a per alert basis (there may have

a database team that only wants to be notified for database outage, or a specific recipient list for context

broker alerts, …). In the same way, not every team or group of people is used to the same communication

channels, also pilot use cases already have established alerting practices and the platform has to adapt to

them. That is why it is required that the alert manager allows a high level of integration with external

systems and communication channels, either directly via email, SMS, Slack, or via a specialized third-party

provider like PagerDuty51 or OpsGenie52.

Finally, for easier and human friendly access to monitoring information, graphical, real-time, configurable

dashboards have to be made available to all users. User access should be integrated with the platform’s

authentication provider based on the OAuth2 protocol and dashboards and views access should be

manageable on a group or role granularity.

In this field, there exists some major Open Source platforms that provide such functionalities

(Prometheus53, Zabbix54, TICK55, …). A comparative evaluation will be made before a final choice.

Next comes the logging tools. Modern platforms are typically composed of a set of microservices, that

each produce logs. Of course, these logs can be followed and inspected individually but that quickly

becomes impractical when there is even a moderate number of microservices. It also quickly makes it

difficult to inspect past logs messages to analyse an event.

That is why the platform has to be equipped with a centralized logging tool. It has to allow for an easy

integration of the components deployed inside the platform, for instance by supporting common logging

formats like Syslog, GELF, Common Event Format or even plain / raw text.

In this field, there exists some major Open Source platforms that provide such functionalities (Graylog56,

ELK57, …). A comparative evaluation will be made before a final choice.

It is also highly desirable that the selected platform be able to be enhanced for SIEM58.

Finally, there is the distributed tracing tool. In current modern microservices based architectures, it can

be hard to analyse a request, to find what and where has gone wrong, why a request took so long to

complete, if we do not have a way to trace its path through all of the micro-services.

This is where a distributed tracing tool comes in, allowing to visualize the path of a request, to see the

corresponding logs, the time taken in each microservice, etcetera.

In this field, there exists some major Open Source platforms that provide such functionalities (Jaeger59,

OpenZipkin60 to name a few). The compliance with the emerging OpenTelemetry61 specifications from the

CNCF is an important factor to consider in the comparative evaluation to be made before a final choice.

51 https://www.pagerduty.com
52 https://www.atlassian.com/software/opsgenie
53 https://prometheus.io
54 https://www.zabbix.com
55 https://www.influxdata.com/time-series-platform/telegraf
56 https://www.graylog.org
57 https://www.elastic.co
58 https://en.wikipedia.org/wiki/Security_information_and_event_management
59 https://www.jaegertracing.io
60 https://zipkin.io
61 https://opentelemetry.io

https://www.pagerduty.com/
https://www.atlassian.com/software/opsgenie
https://prometheus.io/
https://www.zabbix.com/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.graylog.org/
https://www.elastic.co/
https://en.wikipedia.org/wiki/Security_information_and_event_management
https://www.jaegertracing.io/
https://zipkin.io/
https://opentelemetry.io/

F4W-D2.1 System Architecture 43 / 66

V. Data Quality Management aspects

This section describes the general quality management properties, metrics, and quality extensions of the

data models. It also provides an initial mechanism for dealing with Quality of Context Information (QCI)

based on NGSI-LD inside the F4W system.

The following sections summarize the current work related to quality of information, i.e. information

metadata that describes quality related aspects. The main problem is that the information that we recover

from the real world is not always precise. Similarly, data obtained from simulations (e.g. hydraulic and

quality data from EPANET), is subject to limitations. Therefore, F4W needs to address some real problems

in the measurements obtained:

● How can sensors and actuators depict the quality of the measurements that they are able to

provide to the F4W system?

● How can users specify the QCI they require towards the F4W system?

● How can the F4W framework use QCI to select and adapt the resources and their composition to

satisfy the request of a resource user?

The first problem requires the definition of a QCI model and a refinement of the publication interfaces. In

this section, we provide the requirements and an initial specification for using this model.

For the second problem, our approach is that resource users can specify their QCI requirements on a per

basis towards the F4W system through the proper definition inside the data models to be defined in the

corresponding Task 2.3. It requires a refinement of the interfaces to manage the QCI. In this deliverable

we list the different requirements of the QCI data quality information and the initial specification. It is

important to keep aligned the definition of the QCI attributes with the data management plan that is

defined in the D7.3 as well as an alignment with the requested QCI in the different demo cases in WP4

and sensors in WP3. The detailed data model definition to cover these requirements will be addressed in

a following deliverable D2.3.

QCI is associated with the piece of context information when it is delivered to the resource users following

the corresponding defined data model. This means that some requirements should be satisfied in order

to allow the quality of the measurements delivered at the same time in which we provide the

corresponding context data information. These requirements are described in the sections V.2 to V.11 as

a QCI associated with the information model.

Finally, the third problem deals with the mechanism that F4W uses to satisfy the QCI requested by the

users or external systems. In particular, it affects the AI as well as ML processes defined in the

corresponding task 2.2. The detailed adaptation mechanisms will be addressed in the D2.2 that is going

to be delivered later in the project.

This section is organized as follows: Section V.1 describes the alignment with the Data Management Plan

(DMP) defined in the WP7. Sections V.2 to V.11 describe the corresponding QCI requirements and the

corresponding quality parameters.

V.1. Alignment with DMP

The main objective of this section is to align the terms, datasets, and naming conventions used in the

elaborated Data Management Plan (DMP) that has been defined in the Deliverable 7.3 entitled as “Initial

Data Management Plan”.

F4W-D2.1 System Architecture 44 / 66

Specifically, the intention is to align the data and dataset generation with the initiative described in the

DMP related to the Open Research Data Pilot (ORDP). The main intention with the ORDP is to improve

and maximise the access to the generated data under the H2020 project in order to promote furthermore

their reusability. To enable this data sharing aspects, the DMP already defines the mechanism to make

the data compliant with the findable, accessible, interoperable, and reusable (FAIR) principles:

● Findable. The resource can be found in the context through easy mechanisms

● Accessible. Once found that the access can be easily granted with minimal, if any, interaction from

the user

● Interoperable. The structure of the data resource meets some shared specification either a

standard or a data model coded by the initiative.

● Reusable. The legal right to use the resource is enabled

As this deliverable (description of the architecture) almost deals with datasets and metadata to be

exchanged between the FIWARE architectural modules, the next section will describe in detail the type of

information and metadata to be applied. Moreover, it also explains the way in which this metadata is

stored and shared to be easily consumed by third parties.

Control of the metadata

Considering metadata information to ensure the FAIR principles, the presented architecture will use NGSI-

LD connectors in order to describe the properties of the water systems as well as collecting and exposing

the data generated under the water infrastructure.

Thus, the metadata information and vocabularies to be used for data exchange corresponds with the

NGSI-LD data model (see Section I.3). Complementary, inside the corresponding entity descriptions could

be also included some terms coming from the SAREF4Watr ontology.

To share research outcomes, we will use OpenAIRE and the defined guidelines [7] to share the information

with the scientific community. According to the documentation, Open Aire platform defines DataCite

Metadata Schema v3.1 to share the data. Considering this data schema, the metadata to be considered is

the one defined in the following table (Table 6).

Table 6. Open Aire DataCite Metadata fields

Metadata Field Status

Identifier M

Creator M

Title M

Publisher M

PublicationYear M

Subject R

Contributor MA/O

Date M

Language R

ResourceType R

AlternateIdentifier O

RelatedIdentifier MA

Size O

Format O

Version O

Rights MA

Description MA

GeoLocation O

F4W-D2.1 System Architecture 45 / 66

The field status corresponding with the described metadata is defined in the following table:

Table 7. Field status defined in DataCite Metadata Schema v3.1

Field Status Name Acronym Definition

Mandatory M The field must always be present in the metadata record. An

empty element is not allowed.

Mandatory when Applicable MA When the value of the field can be obtained it must be

present in the metadata record

Recommended R The use of the field is recommended

Optional O The property may be used to provide complementary

information about the resource

Authorizations of release as open data for ORDP

Deliverable 7.3 points out the need of making data available (Section III.3). The implementation of this

feature is a topic under strong debate. On one hand it is important because many examples and use cases

require publishing information but on the other hand, there are several alternatives on how to implement

it. One of the approaches to this problem is to provide a property that enables all the properties in the

payload to be public. But there is another approach in which this would be done individually for every

property inside a payload.

Naming conventions:

For those data compiled into datasets (not the data coming from the context broker but for those

historical data compiled through other elements of the architecture there is a naming convention (See

DMP deliverable 7.3, , section III.2 in page 19) :

F4W_Data_WPx_Tx.x_Name_Vx

Where:

● F4W_Data_WPx_Tx.x_: A prefix for the WP and task in which the dataset has been used/created

● Name: A short and explicit name for the dataset

● Vx : An integer indicating the version of the dataset

Based on the depicted naming convention, the overall data outputs expected for the F4W are the depicted

in the Table 8.

Table 8. Data outputs for F4W

Data outputs for Fiware4Water

Citizen awareness and engagement data

Water quality data

Water quantity data

Multiparameter sensor performance data

Wastewater treatment data

Water Demand Forecast data

F4W-D2.1 System Architecture 46 / 66

Simplified sampling procedure

In the case that the payload is related to others, choose a sample of records (5 + number of zeros of the

number of records of the payload). For example:

● if there are 1,300 records.

1,000 (103) < 1,300 < 10,000 (104) → it will be 5 (fixed term) + 4

● if there are 230,000 records.

100,000 (105) < 230,000 < 1,000,000 (106) → it will be 5 (fixed term) + 6

Check that the fields that establish the relationship with other payloads correspond to those found in

those payloads. In case of detecting discrepancies, try to find out the cause, document the possible causes

and register it for the generation of micro improvement projects.

V.2. Precision, accuracy

Precision of the collected measurements from the demo-sites, previously defined in the corresponding

NGSI-LD data model, will be two digits. Indeed, the corresponding connectors that will be developed to

deal with the different water infrastructure systems will ensure the measurement transformation into

this defined precision by rounding the different values that will be sensed.

Precision indicates the range within which a value provided by a resource can be confirmed true. The

definition is adopted from McKeever et al [8] and can be seen basically as a distance in the n-dimensional

value space.

On the other side, accuracy indicates the probability of correctness within given precision how it is defined

by McKeever et al. Usually, the way in which we provide the accuracy is through a probability distribution

function (pdf) and should be compatible between different resources.

Figure 12: Precision vs. accuracy

F4W-D2.1 System Architecture 47 / 66

V.3. Temporal validation

In terms of temporal representation and validation, the water sector usually represents the dates using

ISO 860162 date formatting in one of this two versions:

● ISO complete date with time zone designator,

○ Pattern: YYYY-MM-DDThh:mm:ssTZD

○ Example: 2020-05-16T19:20:30+01:00

● ISO complete date with decimal fractions and time zone designator

○ Pattern: YYYY-MM-DDThh:mm:ss.sTZD

○ Example: 2020-05-16T19:20:30.45+01:00

Considering this specific date format to represent the information, we need to differentiate different

types of temporal concepts related with the measurements performed by the different digital devices:

● Measure time which is the time in which we obtain the corresponding measurement.

● Temporal scope is the temporal validity of the measurement [9]. Usually, in the literature, this

concept should be called measurement lifetime [10]. The temporal scope can be defined as an

exponential decay function of time, in which the temporal validity of the measurement decreases

at a rate proportional to its current value depending on the time. Symbolically, it can be

represented with the following equation:

𝑀(𝑡) = 𝑀0𝑒
−𝜆𝑡

where M is the measurement, M0 is the initial value known as the peak amplitude, and λ (lambda)

is a positive rate called the exponential decay constant. Therefore, it is only needed to provide

the λ value to deal with the temporal scope. By the way, this attribute is optional in the majority

of the cases and resources are free to ignore the decay function.

Additionally, there is another form to represent the equation using the concept of time constant

of the exponential, τ. The time constant is the time it takes to decay by 1/e times the initial value.

𝑀(𝜏)

𝑀(0)
=
1

𝑒

It is also known as the mean lifetime or simply lifetime.

Another important concept is the half-life of the measurement. This is a more intuitive

characteristic of exponential decay and represents the decay quantity to fall to one half of its

initial value. It is often denoted by the symbol t1/2. The half-life can be written in terms of the

decay constant, or the mean lifetime, as:

𝑡1
2⁄
=
𝑙𝑛(2)

𝜆
= 𝜏 ∗ 𝑙𝑛(2)

62 https://www.iso.org/iso-8601-date-and-time-format.html

https://www.iso.org/iso-8601-date-and-time-format.html

F4W-D2.1 System Architecture 48 / 66

● Delay time. Usually, there is a time interval in which the measurement occurs in the real world

and the time in which the measurement becomes available in the system [11]. This is also an

optional parameter and resources are also free to ignore it.

Figure 13: Quantity undergoing exponential decay time

Based on this information exposed above, the architectures and the connectors will always check the

consistency of the date formats. For ensuring this consistency, it will be used the following methods:

● Date Format Libraries. Date format libraries in the connectors will be used to check the

consistency and ensure the correct date format for the information.

● SHACL language63. As most of the information is serialised in JSON-LD, SHACL language could be

used to ensure the date is in their corresponding time-window.

V.4. Completeness

Completeness in the data often refers to the degree of all required data available in the corresponding

dataset. To ensure completeness in the data, it is required to implement one of the following procedures:

● To check that all consecutive registers exists.

● To check that all required values in the different properties are filled64.

● To check that the minimum number of elements set for a value is registered and included. This

aspect could be easily implemented in the case of standardized data models because such

restrictions are included into the schema definition.

63 https://www.w3.org/TR/shacl/#results-value
64 https://www.w3.org/TR/dcat-ucr

https://www.w3.org/TR/shacl/#results-value
https://www.w3.org/TR/dcat-ucr/

F4W-D2.1 System Architecture 49 / 66

Completeness has to be checked before using the data for AI or ML processes because missing elements

will drive the learning algorithms to bias or just to malfunction. When data is structured into JSON

payloads it can be validated with a json schema by using the required clause.

Table 9: Required clause for data model of a Pipe element65

"required": [
 "id",
 "type",
 "initialStatus",
 "length",
 “diameter”,
 "roughness",
 "minorLoss",
 "startsAt",
 "endsAt"
]

V.5. Out of range data (Outliers)

Out of range information commonly can be derived from the failure of the sensors or even the

recalibration of the sensors during the time they are being installed in the different points of the water

infrastructure. Despite the causes some sensing data is out of range, the result derives in anomalous

information that should be fixed at integration time. In these regards, the techniques that could be used

are the following ones:

● Semantic data check. Using SHACL rules66 inside the measurement properties and data schema

could serve to determine, for example specific data ranges from temperature sensing or pH

sensing values inside specific threshold. As for example, we could apply the following rule to

ensure the values of a pH sensor are into a certain range (between 6.5 and 8.5):

Table 10: SHACL rule to assess certain values for a measurement

schema:MeasurementShape

 a sh:NodeShape;

 sh:targetSubjectOf schema:hasValue;

 sh:property [

 sh:path schema:hasValue;

 sh:or ([sh:datatype xsd:double] [sh:datatype xsd:float]) ;

 sh:minInclusive 6.5 ;

 sh:maxInclusive 8.5 ;

].

65 https://github.com/smart-data-models/dataModel.WaterNetworkManagement/blob/master/Pipe/schema.json
66 https://www.w3.org/TR/shacl/

https://github.com/smart-data-models/dataModel.WaterNetworkManagement/blob/master/Pipe/schema.json
https://www.w3.org/TR/shacl/

F4W-D2.1 System Architecture 50 / 66

Therefore, based on this type of rules applied to JSON-LD models, we can validate the properties

and information of the data schema, giving it the necessary consistency.

● Statistically data check. In this regard, outlier’s analysis can be used over specific measurements

of a sensor type in order to ensure the values are under a certain statistical distribution and thus,

ensure a correct distribution of the information along the time series [12]. In the following image,

it is depicted how an analysis and correction of outliers could help correct the time series and

lately, improve the accuracy of the data analytics processes.

Figure 14: Outlier detection and correction over a time series

One statistical solution to calculate whether or not a point is an outlier, we can use the following

equations:

𝑥𝑂𝑢𝑡𝑙𝑖𝑒𝑟 = {
𝑥 > 𝑄3 + 1,5 ∗ 𝐼𝑄𝑅
𝑥 < 𝑄1 − 1,5 ∗ 𝐼𝑄𝑅

Where Q3 is the Upper Quartile, Q1 is the Lower Quartile and IQR is the Inter-Quartile Range (Q3 -

Q1).

Figure 15: Outliers calculation

F4W-D2.1 System Architecture 51 / 66

V.6. Null / empty values

The null or empty values correspond to some failures in data connection or sensing that impedes

gathering a specific measurement from the water infrastructure. Therefore, it will result in a data gap in

the corresponding time series. In order to detect and fix the empty values the overall strategy is to search

null values in the database and fix them using some of the following techniques:

● Remove the specific data. One of the options is to remove the specific data observation as it

generates a noise in the dataset.

● Fix the value. Fix an empty gap could be performed by changing the value using one of the

following options:

○ Duplicate the last observation value.

○ Use statistical approximation in order to “forecast” the value following up the same

statistical distribution.

○ Perform the mean of the last “N” observations in order to fix the gap.

In case that the null values are not accepted, and that the data are coded into json payloads it can be

validated through a clause in the definition of the corresponding json schema. Depending on the type of

property it can be validated requiring a minimum number of items in an enumerated value or a minimum

length for strings.

Table 11: JSON schema clause to validate properties (null/empty values)

Not null for strings

"propertyname": { "type": "string", "minLength": 1 }

...

"required": ["propertyname"]

Not null for enumerations

"propertyname": {

 "type": "enum",

 "items": {

 "type”: "string",

 "minitems": 1

 }

}

...

"required": ["propertyname"]

F4W-D2.1 System Architecture 52 / 66

V.7. Geolocation correctness

Normally, geolocation is represented in JSON using GeoJSON67 or using one of their extension to linked

data, as GeoJSONLD68. Despite the representation used, the resultant file is similar as the exposed in the

following listing.

Table 12: GeoJSON representation of the information

{

 "type": "Feature",

 "geometry": {

 "type": "Point",

 "coordinates": [125.6, 10.1]

 },

 "properties": {

 "name": "Dinagat Islands"

 }

}

Considering this notation to represent geospatial information, geolocation correctness is quite required

because of the ease of this kind of error when managing this information. Commonly, the main error data

sources on geolocation could come from:

● Wrong geo-codification of text addresses

● Misplacing latitude and longitude when available

● Wrong codification for geographical data

In order to detect geo-location errors, some procedures could be implemented in terms of:

● Detection of location error (out of bounds). Commonly out of bounds geolocation errors fix the

latitude and longitude in the 0 (Guinea Gulf). Therefore, checking this location can indicate some

errors occur with the geo-referencing of the dataset.

● Using Geospatial queries considering the bounds and context of the demo-sites will also serve to

detect and fix some error in the geo-location of the sensors and the corresponding datasets.

Additionally, one of the more important QCI is the spatial quality ones in which we can differentiate

between:

● Spatial scope in which our quality context information has a validity only in a specific physical

area. It could be expressed as a point, circle, polygon or a multi polygon structure within a given

reference system. In example in MongoDB, it is possible to launch a query to determine if a point

67 https://geojson.org/
68 https://geojson.org/geojson-ld/

https://geojson.org/
https://geojson.org/geojson-ld/

F4W-D2.1 System Architecture 53 / 66

(i.e. coordinates [3,4] is inside an area ([[0,0],[6,0]],[6,5],[0,5],[0,0]]), a rectangle in this case, and

it effectively is located into the area.

● Origin location is the physical location, usually related to the sensor location that provides the

context information and could be represented like the spatial scope. Similar to the spatial scope,

an origin location may be represented as a point, circle or polygon or even a symbolic area

specified inside a reference system. Although it is possible to provide a clear outdoor location

based on standards method (e.g. using GeoJSON), there is no standard method to provide a

location within a reference system, mainly in indoor location (e.g. the location of a sensor inside

a tank).

V.8. Duplicates

In the event that the payload does not allow duplicates, we could order the payload by various criteria

and verify that there are no duplicates.

In case of detecting discrepancies, we could try to find out the cause, document the possible causes and

register it for the generation of micro improvement projects.

NOTE: An easy way to check this case for simple and non-structured payloads that can be traced to a single

table is to create a pivot table and group and count for each field.

Table 13: Example for simple detection of duplicates

Database 1

id, name, position

1, valve10, [10.3, 4.5]

1, valve10, [10.3, 4.5]

2, valve11, [20.1, 34.2]

3, valve12, [10.3, 4.5]

Aggregated by id

id, count(id)

1, 2

2, 1

3, 1

V.9. Inconsistent replicated data

One of the main sources of inconsistency are the replication of data. So, the principles to follow in order

to reduce this kind of errors are these:

● When possible in the design phase, replication of data between data repositories it has to be

avoided.

F4W-D2.1 System Architecture 54 / 66

● Whenever this is not possible, a valid ‘source of truth’ has to be set (a master copy of the data),

while the rest of data has to be dependent and in case of conflict the master copy rules.

● This last case is not possible, then implement another mechanism to check which copy is the one

more accurate (i.e. by including an update date together with the information).

For example, when storing historical data about the sensor these have to be distributed in different

databases or repositories for the different analysis to be performed. As previously stated, some wrong

values could be gathered due to sensors malfunction, errors on the communication mechanisms, etc.

Correction could be extended to some of these replicas of the databases but not to others creating

inconsistent data coming from the same sensor in the very same moment.

Table 14: Inconsistent data across replicated databases

Database1

id, name, position

1, valve10, [10.3, 4.5]

2, valve11, [20.1, 34.2]

3, valve12, [10.3, 4.5]

Database2

id, name, position

1, valve10, [4.3, 5.5]

2, valve11, [20.1, 34.2]

3, valve12, [10.3, 4.5]

Database3

id, name, position

1, valve10, [4.3, 5.5]

2, valve11, [20.1, 34.2]

3, valve12, [7.3, 1.0]

V.10. Wrong codifications

Some of the properties of the payloads could be coded for any reason (an id coming from external

databases, because it belongs to codified field according to an external regulation). This type of error

comes when there is not an online connection with the sources of coding, or the regulation is updated for

some other reasons. Some of the possible solutions to resolve this issue include:

F4W-D2.1 System Architecture 55 / 66

● Masks for input is a good measure to reduce this kind of error in the ingestion process whenever

it is manual.

● Redundancy characters (checksum) for some of the critical properties is recommended.

● Background processes checking the validation of coded properties needs to be implemented,

especially for those critical properties.

● Wrong codifications are frequently found when different measurement systems are used.

The example below shows a field which is calculated based on the sum of the individual figures of the

code field. In the example for registers 1 and 2 is right but for the register 3 is wrong.

Table 15: Example of checksum property in a database

Database1

id, code, checksum

1, 01034, 8 (0+1+0+3+4 = 8 Checksum is right)

2, 29120, 14 (2+9+1+2+0 = 14 Checksum is right)

3, 43021, 7 (4+3+0+2+1 = 10 Checksum is wrong)

V.11. Out of normalized data

In the event that the schema declares that any of the fields is normalized, carry out a sampling (with the

protocol defined above) and check compliance with the normalization. In case of detecting discrepancies,

try to find out the cause, document the possible causes and register it for the generation of micro

improvement projects.

This kind of error is frequently found when there are possible categories for a data and there is not the

control of capitals and therefore the same category can be codified as (Pattern, PATTERN, pattern, etc).

Table 16: Out of normalization values in a database

Database1

id, type, name

1, pattern, valve10 (pattern = pattern, right)

2, Pattern, valve11 (Pattern ≠ pattern, wrong)

3, PATTERN, valve12 (PATTERN ≠ pattern, wrong)

4, Pattern, valve13 (Pattern ≠ pattern, wrong)

F4W-D2.1 System Architecture 56 / 66

V.12. Simulation options and settings

For data that is the result of a simulation, options and settings used in the simulation will affect the quality

of the results. Water distribution network hydraulic and water quality data derived from EPANET

simulations is affected by the selected simulation time steps convergence, tolerance and checking options

[13]. Specifically, these include:

1. Hydraulic time step (how often the hydraulic state of the network is computed).

2. Water quality time step (time step used to track changes in water quality throughout the

network.

3. Maximum trials allowed for hydraulic convergence (the maximum number of trials used to

solve network hydraulics at each hydraulic time step).

4. Total normalised flow change for hydraulic convergence (convergence criterion that

determines when a hydraulic solution has been reached; trials end when the sum of all flow

changes from the previous solution divided by the total flow in all links is less than this value).

5. Maximum flow change for hydraulic convergence (additional convergence criteria that

determines when a hydraulic solution has been reached; the largest absolute flow change

between the current and previous solutions needs to be less than this value).

6. Maximum head loss error for hydraulic convergence (additional convergence criteria that

determines when a hydraulic solution has been reached; the difference between the

computed head loss and the difference between nodal heads across each link needs to be less

than this value).

7. Frequency of hydraulic status checks (the number of solution trials that pass during hydraulic

balancing before the status of links connected to tanks are updated).

8. Maximum trials for status checking (the number of solution trials after which periodic status

checks are discontinued and checks are instead made only after convergence is achieved).

9. Accuracy level where solution damping begins (accuracy value at which solution damping and

status checks on Pressure Reducing Valves (PRVs) and Pressure Sustaining Valves (PSVs) should

begin).

10. Water quality tolerance (the difference in water quality level below which it is assumed that

the quality of two parcels of water is the same).

Additionally, EPANET provides the following analysis statistics:

1. Number of hydraulic iterations taken.

2. Largest head loss error for links.

3. Cumulative water quality mass balance ratio.

VI. Management of data

The management of data needs two main elements. On the one hand, technical procedures ensure that

the data is in good condition across the organisation, but it also requires that the people across the

organisation is concerned about the management of data. On the other hand, next defined elements are

required for a full management of data across the organisation.

F4W-D2.1 System Architecture 57 / 66

VI.1. Data Inventory

The data inventory is a technical resource that can be implemented using anything from very simple tools

(spreadsheet) to global structured tools able to manage the lineage of the different data.

It is a repository where all the data assets have to be compiled and identified. It also requires that these

assets are prioritized according to the relevance for the organisation. Due to the fact that access to data

is a critical factor for a successful management, an identity management solution should be implemented

in order to ensure the correct access to the information by the granted stakeholders. Therefore, every

asset registered has to include also the people able to access the data asset and what kind of permissions

are granted.

VI.2. Data dictionary

The Data dictionary is another repository, depending or connected into the data inventory for the

compilation of all the fields/properties of the data assets. It compiles not only what data asset the element

belongs to but also the type of data in the field, and any restrictions/conditions of the values included. It

helps in the design of new data sources across the organisation to find out information which is already

in the organisation to avoid replications of data sources and the inherent inconsistencies.

VI.3. Data management procedures

In order to maintain proper management of the data across the organisation it is necessary to create,

approve, and implement a group of procedures to manage the data assets. Otherwise these resources will

not be adequately maintained and basically, they would turn in a waste of resources and an unbearable

bureaucracy.

Below there is a generic description that has to be adapted to the particular needs of any organization.

The initiative of smart data models has implemented part of them for their own use.

VI.4. Dataset registration process.

We are in the previous step before a department of the organization decides to create (or not) a new data

set. How should we proceed? Following the detailed scheme below:

Figure 16: Dataset registration process

F4W-D2.1 System Architecture 58 / 66

The general process considers the need of a user to access certain data within the organization. Due to

the restrictions the user is not aware about its potential existence and therefore the first step is to find

out the availability or the lack of these data within the inventory of data assets.

If the dataset exists and its structure meets the needs of the user, then the process ends by granting the

permissions to access it. Sometimes a good precursor of the required data is available and with some

modifications it could fulfil the needs. The process ends by asking those modifications and granting access

to the user.

It is also possible that it is not so clear what are the demands in terms of data access from the user and

accordingly further information would be requested before making any decision.

Finally, if the requested data does not exist a request for their creation is sent to the responsible person

managing the data sources.

VI.5. Unsubscribe process

The unsubscribe process removes a data resource from the inventory. Usually because it is going to be

replaced, but it does not impact on the process. Firstly, the process urges to communicate to the existing

users of the data resource with the intention of removing the resource. Once gathered the issues, if there

are no issues it is stored and finally removed from the inventory. In case there are some inconveniences,

they are assessed and depending on the result can be rejected or done with a process for the removal

before the final storage and final removal from the inventory.

Figure 17: Unsubscribe process

F4W-D2.1 System Architecture 59 / 66

VI.6. Evaluation process of changes to dataset

The change request is the process by which the structure of a data resource is reorganised (without

complete backwards compatibility of data). A meeting or equivalent method has to be held with the

existing users of the resource. As a consequence, a document with the input from the technical,

organizational and point of view is generated including the availability of resources to face the change. If

it is approved, then the plan is implemented, and the data resource is changed accordingly. In case the

request is rejected, the changes plan is stored and registered for future needs.

Figure 18: Evaluation process of changes to dataset

F4W-D2.1 System Architecture 60 / 66

VI.7. Data registration process for new applications

A new application is a generator of new data assets. Depending on the purchase process and in the

features of the application it has to be approached differently. Case it is a SaaS solution it has to be

analysed the availability to access the business data within the service (including costs and resources

required). If the data are not accessible the recommendation is to reject the application.

If it is accessible it has to be determined to what extent is configurable in terms of data, in order to make

it compatible with the existing data assets. If there is not a possibility to change then directly store the

structure into the data inventory. In case it is adaptable the recommendation is to include the change

before putting into production the application.

If the data is contracted as a service (without deep integration into the business logic) it has to agree with

the provider, the rights to access the data and to gather the rights to make it public with an open license.

Finally, if the application is in development, one of the requirements for the design has to be the

compatibility with the existing data assets in the inventory. Consequently, once developed the data assets

will have to be created in the inventory through the creation process.

Figure 19: Data registration process for new applications

F4W-D2.1 System Architecture 61 / 66

VI.8. Process Assignment of permits (data consumption)

New permissions on a data asset have to be granted once the identity of the person is confirmed and after

permission of the data owner. The access permission to any data assets has to be maintained and included

into the inventory database. Rejections are also required to be stored for security reasons.

Figure 20: Process Assignment of permits (data consumption)

F4W-D2.1 System Architecture 62 / 66

VI.9. Process Creation of new dataset.

The creation of a new data asset to be controlled has to be a restrictive process. Otherwise it could impose

a bureaucracy to the organisation that impedes the benefits of the data asset control.

An organization can only control a small part of their data assets with specific procedures. The creation

process applies to those data assets that have a priority which entitles them to be controlled and

managed.

First step is to gather the needs and impacts on the potential users. Once agreed it has to be assessed the

privacy and security conditions of the new data asset and stored in the inventory database. Additionally,

it has to be analysed the actual impact on other users (based on the requirements gathered previously)

and to proceed to the technical design. Once implemented the users should validate implementation

before entering into production mode.

Figure 21: Process of creation a new dataset

F4W-D2.1 System Architecture 63 / 66

VII. EU Added Value

We can understand the EU added value for the project as the value resulting from an EU project which is

additional to the value that would have been created by individual states members alone. This means that

there are several areas of interest to cover this added value:

 Networking, the project has involved the participation of different EU members and external

stakeholders from Tunisia and India in the definition of the proper Smart Data Models to be used

to share the Water information. The adoption of ETSI NGSI-LD standard as well as the FIWARE

Technology have develop a research network to interact at pan-European level focussed on the

results of the project.

 This collaboration in the definition of the ETSI standard as well as the Smart Data Models to be

used in the standard have consequently facilitated the excellence and capacity building of the

European partners involved on. This is basically because they are at the forefront of technology

development.

 The collaboration of the FIWARE Foundation and specially the FIWARE Community provides us

the opportunity to increase the visibility of the project. Additionally, this visibility, beyond EU

countries, increase the geographic scope of the partners involved in the creation of the

Fiware4Water Reference Architectures given the advantage offered by FIWARE Marketplace to

develop business beyond EU countries.

 It is well-known that one of the problem in the Water Sector, and even other vertical sectors, is

the leak of data harmonization and data management. The main purpose of the Fiware4Water

Reference Architecture (F4W-RA) is to offer an architecture, free to use, that allows open

interoperability of services using a standard context information representation easily

understandable by human and services. this approach will lead to a harmonisation of water

management services at both European and pan-European level.

 Moreover, the use of open source components with open APIs and standards is well-known to

lead a cost reduction of the services to be developed as well as prevent the redundancies in the

Smart Water services due to all of them can share the same context information representation

as well as the same open interfaces to access the data.

F4W-D2.1 System Architecture 64 / 66

Conclusion and Perspectives

In this report, it is presented the reference architecture of the FIWARE4Water platform. This platform

targets the integration of any legacy and existing water management system into a large-scale standard

platform based on FIWARE Technology. The goal is to allow all water sector applications to run on a

homogeneous infrastructure, utilizing standard data exchange models to represent the context

information and using standard APIs to access and share the information.

Existing data modelling approaches typically address only parts of the aspects required on the different

abstraction layers. Moreover, they are only focused on a very concrete use case and therefore, they are

not standardised to any other broader solutions. That is the main reason explaining the important

interoperability problems that water management applications are currently facing. Higher-level ontology

is often not suitable for modelling context information due to their abstraction in the representation of

the information. Nevertheless, the use of standard data models based on such defined ontologies can

easily mitigate or even resolve these problems. This is the main purpose of the selection of the ETSI NGSI-

LD API to access and manage the context information and the use of the FIWARE Smart Data Models

aligned with ETSI ISG CIM and ETSI SAREF for representing of the context information. In a relevant use

case, the integration with EPANET have required the definition of new data models, already available with

an open license, capable to map accurately the needs of this management software.

Of course, different scenarios may use their own data models and representation of sensor information,

therefore matching and transforming this context information will be necessary in FIWARE4Water

through the use of specific FIWARE IoT Agents. In addition, different types of processing require different

representations, especially when we are talking about Machine Learning, Artificial Intelligence and Big

Data processing activities. This is something that will be covered in the subsequent activities of the WP2,

especially inside Task 2.2.

In addition, an important challenge will be to assess the performance of the FIWARE4Water platform and

demonstrate at large scale the technical feasibility of using FIWARE Technology and FIWARE Smart Data

Models inside the water domain. Thus, it will demonstrate the generation of newer digital services using

a reference architecture across the sector, enabling interoperability and data sharing. Hence, the idea is

to evaluate them as the flexible digital open source solution of choice in a variety of diverse real-world

applications covering a wide range of water challenges and contexts. These real-world contexts will be

provided by the four (4) large scale demo cases of the FIWARE4Water project, which will be the living

laboratories for the testing, validation and demonstration (WP4) of the Smart Water Apps developed and

the Smart Water Devices customised during the project (WP3).

Moreover, modelling the Quality of Context Information (QCI) is an important aspect for all the smart

context information applications that we will develop. Different quality aspects like precision, accuracy,

temporal validation, completeness, outliers, null/empty values, geolocation correctness, duplicates,

inconsistent replicated data, wrong codifications, and out of normalized data have been described in the

literature, but the definitions for these terms vary significantly and no standard has yet emerged. Different

approaches have been proposed to describe how this QCI can be integrated with different kinds of

attributes inside the smart data models or the use of concrete CEP mechanisms automatically associated

to the context information. Therefore, an important challenge for the FIWARE4Water platform will be to:

 determine how to model context information on the different levels to include this QCI, and

 define how to infer the resulting QCI and the resulting valid Context Information based on the

higher-level context information together with the corresponding associated QCI serving as input.

F4W-D2.1 System Architecture 65 / 66

By levels, we refer to the different actions to take in different layers of the architecture where we can

actuate on the context information in order to calculate the corresponding QCI indicators, and ultimately

allow or discard this context information because of its poor QCI indicator or indicators.

Furthermore, QCI will help users to succeed in managing their data. This is a progressively relevant aspect

of the water management sector, in which the increasing size of the data collected, together with the rise

of different data types, makes data management necessary for successful water management.

FIWARE4Water project provides extensive examples and procedures to ensure a proper use of water data.

Cybersecurity is another fundamental aspect to be integrated in any aspects of the platforms following a

security by design paradigm. Starting from the platform conception, building upon an open-source

ecosystem raises challenges from the integration phase as code analysis has to be conducted for any

software dependencies part of the platform, including one from third parties. Then the deployment phase,

often built upon containerised and scalable environments requires special attention, transforming

traditional DevOps software development organisation into DevSecOps one. Finally, traditional security

tests have to be deployed at run time to maintain system security. This includes compliance to GDPR

requirements.

Last but not least, the adoption of FIWARE technology and therefore, the use of ETSI NGSI-LD provides a

good opportunity for the CNRS nanosensor (the former so called “PROTEUS sensor”) to be FIWARE

compliant. FIWARE-ready IoT devices come with easy-to-install drivers and instructions that help to

transform the measures they gather into context information, accessible to applications using the ETSI

NGSI-LD standard. The main advantage of this approach is that it does not require the use of a Gateway

API (a.k.a. FIWARE IoT Agent) to transform the legacy representation format and transport protocol into

NGSI-LD. The communication can hence be directly sent to the proper FIWARE Context Broker. For this

purpose, the FIWARE4Water partners, through WP2, will help CNRS to certify its CRNS nanosensor.

Currently, this sensor is an innovation product at TRL5 level and the purpose at the end of the project is

to reach TRL7 level. Therefore, from the point of view of the FIWARE Ecosystem, obtaining a "FIWARE-

Ready IoT device" certification could open the possibility to access to the FIWARE Market in a preference

position.

F4W-D2.1 System Architecture 66 / 66

References

[1] Abella, A., Ortiz-de-Urbina-Criado, M., & De-Pablos-Heredero, C. (2019). Meloda 5: A metric to
assess open data reusability. El profesional de la información (EPI), 28(6).

[2] JSON-LD (A JSON-based Serialization for Linked Data), v1.1, W3C Proposed Recommendation 07
May 2020, https://www.w3.org/TR/json-ld11.

[3] ETSI Context Information Management (CIM); NGSI-LD API, ETSI GS CIM 009 V1.2.2 (2020-02)
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.02.02_60/gs_CIM009v010202p.pdf

[4] Rossman, L.A. (2000) EPANET 2 Users Manual. EPA/600/R-00/057, U.S. Environmental Protection
Agency, Cincinnati, OH.

[5] Mo Jamshidi, "From Large-Scale Systems to Cyber-Physical Systems," Journal of Internet
Technology, vol. 12, no. 3 , pp. 367-374, May. 2011.

[6] A Brief Introduction to XACML, Sun Microsystem, Inc., 2003, https://www.oasis-
open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html

[7] OpenAIRE Guidelines for Data Archives, OpenAIRE, 2015, licensed under Creative Commons
Attribution 4.0 International. https://guidelines.openaire.eu/en/latest/data/index.html

[8] McKeever, S. et al.: A Context Quality Model to Support Transparent Reasoning with Uncertain
Context, In Proceedings of 1st Workshop on Quality of Context (QuaCon), Stuttgart, Germany,
2009.

[9] Sheikh, K., Wegdam, M., van Sinderen, M. (2007). Middleware support for quality of context in
pervasive context-aware systems. In: Proceedings of 5th IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOMW). pp. 461-466.

[10] Manzoor, A., Truong, H.L., Dustdar, S. (2008). On the evaluation of quality of context. In:
Proceedings of European Conference on Smart Sensing and Context (EuroSSC). pp. 140-153.

[11] Bu, Y., Gu, T., Tao, X., Li, J., Chen, S., Lu, J. (2006). Managing quality of context in pervasive
computing. In: Proceedings of 6th International Conference on Quality Software (QSIC). pp. 193-
200.

[12] Lu, Y., Kumar, J., Collier, N. O., Krishna, B., Langston, M. A. (2018). Detecting outliers in streaming
time series data from ARM distributed sensors. In: Proceedings of Detecting outliers in streaming
time series data from ARM distributed sensors conference.

[13] Open Water Analytics. "OWA-EPANET Toolkit 2.2."
http://wateranalytics.org/EPANET/_options_page.html (accessed 11th June 2020).

https://www.w3.org/TR/json-ld11/
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.02.02_60/gs_CIM009v010202p.pdf
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://guidelines.openaire.eu/en/latest/data/index.html

